【題目】已知函數(shù)f(x)= +b(a,b∈R)的圖象在點(1,f(1))處的切線方程為y=x﹣1.
(1)求實數(shù)a,b的值及函數(shù)f(x)的單調(diào)區(qū)間.
(2)當f(x1)=f(x2)(x1≠x2)時,比較x1+x2與2e(e為自然對數(shù)的底數(shù))的大小.
【答案】
(1)解:f′(x)= ,
∵函數(shù)f(x)圖象在點(1,f(1))處的切線方程為y=x﹣1,
∴ ,
∴f(x)= ,定義域為(0,+∞),
∴f′(x)=
∴x∈(0,e),f′(x)>0,x∈(e,+∞),f′(x)<0,
∴f(x)的單調(diào)增區(qū)間是(0,e),單調(diào)減區(qū)間是(e,+∞)
(2)解:當f(x1)=f(x2)(x1≠x2)時,x1+x2>2e,
下面證明結論,
當x>e時,f(x)= >0,由(1)可知f(x)的單調(diào)增區(qū)間是(0,e),單調(diào)減區(qū)間是(e,+∞),
又f(1)=0,
∴若f(x1)=f(x2)(x1≠x2),則x1,x2都大于1,且必有一個小于e,一個大于e,
設1<x1<e<x2,
當x2≥2e時,顯然x1+x2>2e,
當e<x2<2e時,
∴f(x1)﹣f(2e﹣x2)=f(x2)﹣f(2e﹣x2)= ﹣ ,
設g(x)= ﹣ ,e<x<2e,
∴g′(x)= {4e(e﹣x)(1﹣lnx)+x2[(2﹣ln(﹣(x﹣e)2+e2]},
∵e<x<2e,
∴0<﹣(x﹣e)2+e2<e2,
∴2﹣ln(﹣(x﹣e)2+e2>0
∵4e(e﹣x)(1﹣lnx)>0,
∴g′(x)>0,
∴g(x)在(e,2e)上單調(diào)遞增,
∴g(x)>g(e)=0,
∴f(x1)>f(2e﹣x2),
∵1<x1<e<x2,
∴0<2e﹣x2<e,
∵f(x)在(0,e)上單調(diào)遞增,
∴x1>2e﹣x2,
∴x1+x2>2e,
綜上所述,當f(x1)=f(x2)(x1≠x2)時,x1+x2>2e
【解析】(1)根據(jù)導數(shù)幾何意義即可求出a,b的值,根據(jù)導數(shù)和函數(shù)的單調(diào)性的關系即可求出,(2)當f(x1)=f(x2)(x1≠x2)時,x1+x2>2e,設1<x1<e<x2,當x2≥2e時,顯然x1+x2>2e,當e<x2<2e時,構造函數(shù),根據(jù)函數(shù)的單調(diào)性即可證明
【考點精析】根據(jù)題目的已知條件,利用利用導數(shù)研究函數(shù)的單調(diào)性的相關知識可以得到問題的答案,需要掌握一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代內(nèi)容極為豐富的數(shù)學名著,系統(tǒng)地總結了戰(zhàn)國、秦、漢時期的數(shù)學成就.書中將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為“陽馬”,若某“陽馬”的三視圖如圖所示(單位:cm),則該陽馬的外接球的體積為( )
A.100πcm3
B.
C.400πcm3
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用數(shù)學歸納法證明1+2+3+…+n2= ,則當n=k+1時左端應在n=k的基礎上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側面BB1C1C為菱形,AB⊥B1C.
(Ⅰ)證明:AC=AB1;
(Ⅱ)若AC⊥AB1 , ∠CBB1=60°,AB=BC,求二面角A﹣A1B1﹣C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當x∈(0,2]時,f(x)=ex﹣ ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關系是( )
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某產(chǎn)品的廣告費用x(單位:萬元)與銷售額y(單位:萬元)具有線性關系關系,其統(tǒng)計數(shù)據(jù)如下表:
x | 3 | 4 | 5 | 6 |
y | 25 | 30 | 40 | 45 |
由上表可得線性回歸方程 = x+ ,據(jù)此模型預報廣告費用為8萬元時的銷售額是( )
附: = ; = ﹣ x.
A.59.5
B.52.5
C.56
D.63.5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】網(wǎng)購是當前民眾購物的新方式,某公司為改進營銷方式,隨機調(diào)查了100名市民,統(tǒng)計其周平均網(wǎng)購的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過40歲的有65人將所抽樣本中周平均網(wǎng)購次數(shù)不小于4次的市民稱為網(wǎng)購迷,且已知其中有5名市民的年齡超過40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯誤的概率不超過0.10的前提下認為網(wǎng)購迷與年齡不超過40歲有關?
網(wǎng)購迷 | 非網(wǎng)購迷 | 合計 | |
年齡不超過40歲 | |||
年齡超過40歲 | |||
合計 |
(2)若從網(wǎng)購迷中任意選取2名,求其中年齡丑啊過40歲的市民人數(shù)ξ的分布列與期望. 附: ;
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.01 |
k0 | 2.072 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為 .
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求直線l被曲線C截得的弦長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某省高考改革新方案,不分文理科,高考成績實行“3+3”的構成模式,第一個“3”是語文、數(shù)學、外語,每門滿分150分,第二個“3”由考生在思想政治、歷史、地理、物理、化學、生物6個科目中自主選擇其中3個科目參加等級性考試,每門滿分100分,高考錄取成績卷面總分滿分750分.為了調(diào)查學生對物理、化學、生物的選考情況,將“某市某一屆學生在物理、化學、生物三個科目中至少選考一科的學生”記作學生群體S,從學生群體S中隨機抽取了50名學生進行調(diào)查,他們選考物理,化學,生物的科目數(shù)及人數(shù)統(tǒng)計如表:
選考物理、化學、生物的科目數(shù) | 1 | 2 | 3 |
人數(shù) | 5 | 25 | 20 |
(I)從所調(diào)查的50名學生中任選2名,求他們選考物理、化學、生物科目數(shù)量不相等的概率;
(II)從所調(diào)查的50名學生中任選2名,記X表示這2名學生選考物理、化學、生物的科目數(shù)量之差的絕對值,求隨機變量X的分布列和數(shù)學期望;
(III)將頻率視為概率,現(xiàn)從學生群體S中隨機抽取4名學生,記其中恰好選考物理、化學、生物中的兩科目的學生數(shù)記作Y,求事件“y≥2”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com