【題目】已知某產(chǎn)品的廣告費(fèi)用x(單位:萬元)與銷售額y(單位:萬元)具有線性關(guān)系關(guān)系,其統(tǒng)計(jì)數(shù)據(jù)如下表:
x | 3 | 4 | 5 | 6 |
y | 25 | 30 | 40 | 45 |
由上表可得線性回歸方程 = x+ ,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為8萬元時的銷售額是( )
附: = ; = ﹣ x.
A.59.5
B.52.5
C.56
D.63.5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓M: (a>b>0)的一個焦點(diǎn)為F(1,0),離心率為 ,過點(diǎn)F的動直線交M于A,B兩點(diǎn),若x軸上的點(diǎn)P(t,0)使得∠APO=∠BPO總成立(O為坐標(biāo)原點(diǎn)),則t=( )
A.2
B.
C.
D.﹣2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且(a+b+c)(a+b﹣c)=3ab.
(Ⅰ)求角C的值;
(Ⅱ)若c=2,且△ABC為銳角三角形,求a+b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確命題的個數(shù)是( ) ①對于命題p:x∈R,使得x2+x+1<0,則¬p:x∈R,均有x2+x+1>0;
②命題“已知x,y∈R,若x+y≠3,則x≠2或y≠1”是真命題;
③回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為(4,5),則回歸直線方程為 =1.23x+0.08;
④m=3是直線(m+3)x+my﹣2=0與直線mx﹣6y+5=0互相垂直的充要條件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= +b(a,b∈R)的圖象在點(diǎn)(1,f(1))處的切線方程為y=x﹣1.
(1)求實(shí)數(shù)a,b的值及函數(shù)f(x)的單調(diào)區(qū)間.
(2)當(dāng)f(x1)=f(x2)(x1≠x2)時,比較x1+x2與2e(e為自然對數(shù)的底數(shù))的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)A(﹣2,0)的直線與x=2相交于點(diǎn)C,過點(diǎn)B(2,0)的直線與x=﹣2相交于點(diǎn)D,若直線CD與圓x2+y2=4相切,則直線AC與BD的交點(diǎn)M的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2|x+a|+|x﹣ |(a≠0).
(1)當(dāng)a=1時,解不等式f(x)<4;
(2)求函數(shù)g(x)=f(x)+f(﹣x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點(diǎn),且離心率
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)是否存在過點(diǎn)的直線交橢圓與不同的兩點(diǎn),且滿足 (其中為坐標(biāo)原點(diǎn))。若存在,求出直線的方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P為拋物線C上一點(diǎn),且P在第一象限,PM⊥l于點(diǎn)M,線段MF與拋物線C交于點(diǎn)N,若PF的斜率為 ,則 =( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com