【題目】若數(shù)列A:a1 , a2 , …,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.
(Ⅰ)若數(shù)列1,x,y,7為“U﹣數(shù)列”,寫出所有可能的x,y;
(Ⅱ)若“U﹣數(shù)列”A:a1 , a2 , …,an中,a1=1,an=2017,求n的最大值;
(Ⅲ)設(shè)n0為給定的偶數(shù),對所有可能的“U﹣數(shù)列”A:a1 , a2 , …,an0 , 記M=max{a1 , a2 , …,an0},其中max{x1 , x2 , …,xs}表示x1 , x2 , …,xs這s個數(shù)中最大的數(shù),求M的最小值.

【答案】解:(Ⅰ)∵數(shù)列A:a1,a2,…,an(n≥3)中ai∈N*(1≤i≤n)且對任意的2≤k≤n﹣1,ak+1+ak﹣1>2ak恒成立,則稱數(shù)列A為“U﹣數(shù)列”.

數(shù)列1,x,y,7為“U﹣數(shù)列”,

∴所有可能的x,y為 ,

(Ⅱ)n的最大值為65,理由如下

一方面,注意到:ak+1+ak﹣1>2akak+1﹣ak>ak﹣ak﹣1

對任意的1≤i≤n﹣1,令bi=ai+1﹣ai,則bi∈Z且bk>bk﹣1(2≤k≤n﹣1),故bk≥bk﹣1+1對任意的2≤k≤n﹣1恒成立.(★)

當a1=1,an=2017時,注意到b1=a2﹣a1≥1﹣1=0,得bi=(bi﹣bi﹣1)+(bi﹣1﹣bi﹣2)+…+(b2﹣b1)+b1≥i﹣1(2≤i≤n﹣1)

此時

,解得:﹣62≤n≤65,故n≤65

另一方面,取bi=i﹣1(1≤i≤64),則對任意的2≤k≤64,bk>bk﹣1,故數(shù)列{an}為“U﹣數(shù)列”,

此時a65=1+0+1+2+…+63=2017,即n=65符合題意.

綜上,n的最大值為65.

(Ⅲ)M的最小值為

證明如下:

當n0=2m(m≥2,m∈N*)時,

一方面:由(★)式,bk+1﹣bk≥1,bm+k﹣bk=(bm+k﹣bm+k﹣1)+(bm+k﹣1﹣bm+k﹣2)+…+(bk+1﹣bk)≥m.

此時有:(a1+a2m)﹣(am+am+1)=(bm+1+bm+2+…+b2m﹣1)﹣(b1+b2+…+bm﹣1

=(bm+1﹣b1)+(bm+2﹣b2)+…+(b2m﹣1﹣bm﹣1)≥m(m﹣1)

另一方面,當b1=1﹣m,b2=2﹣m,…,bm﹣1=﹣1,bm=0,bm+1=1,…,b2m﹣1=m﹣1時,

ak+1+ak﹣1﹣2ak=(ak+1﹣ak)﹣(ak﹣ak﹣1)=bk﹣bk﹣1=1>0

取am=1,則am+1=1,a1>a2>a3>…>am,am+1<am+2<…<a2m,

此時

綜上,M的最小值為


【解析】(Ⅰ)將k=2和k=3分別代入ak+1+ak-12ak中得到線性約束條件,并找出其整點;(Ⅱ)(Ⅲ)構(gòu)造新數(shù)列,使bi=ai+1ai.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=16x﹣2×4x+5,x∈[﹣1,2]
(1)若f(x)=4,求x;
(2)求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當a=﹣1時,求函數(shù)f(x)的最大值和最小值.
(2)函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù),求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(1,0), =(﹣1,1),則( )
A.
B.
C.( )∥
D.( )⊥

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平面四邊形ABCD中,AB= ,AD=2 ,CD= ,∠CBD=30°,∠BCD=120°.

(1)求BD的長;
(2)求∠ADC的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)y=f(2x﹣1)的定義域是( )
A.{x|0≤x≤1}
B.{x|0≤x≤2}
C.{x| ≤x≤ }
D.{x|﹣1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以圓x2+y2﹣2x﹣2y﹣1=0內(nèi)橫坐標與縱坐標均為整數(shù)的點為頂點的三角形的個數(shù)為(
A.76
B.78
C.81
D.84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2 sin(θ+ ). (Ⅰ)求曲線C1與曲線C2的普通方程;
(Ⅱ)若點P的坐標為(﹣1,3),且曲線C1與曲線C2交于B,D兩點,求|PB||PD|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣ln(1+|x|),則使得f(2x)>f(x﹣1)成立的x取值范圍是

查看答案和解析>>

同步練習冊答案