【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若實(shí)數(shù)為整數(shù),且對(duì)任意的時(shí),都有恒成立,求實(shí)數(shù)的最小值.

【答案】(Ⅰ)極大值為,無(wú)極小值;(Ⅱ)1.

【解析】

()由題意首先求得導(dǎo)函數(shù)的解析式,然后結(jié)合導(dǎo)函數(shù)的符號(hào)討論原函數(shù)的單調(diào)性,從而可確定函數(shù)的極值;

()結(jié)合題意分離參數(shù),然后構(gòu)造新函數(shù),研究構(gòu)造的函數(shù),結(jié)合零點(diǎn)存在定理找到隱零點(diǎn)的范圍,最后利用函數(shù)值的范圍即可確定整數(shù)m的最小值.

()設(shè)

,

,則;,則;

上單調(diào)遞增,上單調(diào)遞減,

,無(wú)極小值.

(),即上恒成立,

上恒成立,

設(shè),則

顯然,

設(shè),則,故上單調(diào)遞減

,,

由零點(diǎn)定理得,使得,即

時(shí),,則

時(shí),.

上單調(diào)遞增,在上單調(diào)遞減

又由,,則

∴由恒成立,且為整數(shù),可得的最小值為1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射手每次射擊擊中目標(biāo)的概率是,且各次射擊的結(jié)果互不影響.

(Ⅰ)假設(shè)這名射手射擊次,求有次連續(xù)擊中目標(biāo),另外次未擊中目標(biāo)的概率;

(Ⅱ)假設(shè)這名射手射擊次,記隨機(jī)變量為射手擊中目標(biāo)的次數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年的天貓“雙11”交易金額又創(chuàng)新高,達(dá)到2684億元,物流爆增.某機(jī)構(gòu)為了了解網(wǎng)購(gòu)者對(duì)收到快遞的滿意度進(jìn)行調(diào)查,對(duì)某市5000名網(wǎng)購(gòu)者發(fā)出滿意度調(diào)查評(píng)分表,收集并隨機(jī)抽取了200名網(wǎng)購(gòu)者的調(diào)查評(píng)分(評(píng)分在70100分之間),其頻率分布直方圖如圖,評(píng)分在95分及以上確定為“非常滿意”.

1)求的值;

2)以樣本的頻率作概率,試估計(jì)本次調(diào)查的網(wǎng)購(gòu)者中“非常滿意”的人數(shù);

3)按分層抽樣的方法,從評(píng)分在90分及以上的網(wǎng)購(gòu)者中抽取6人,再?gòu)倪@6人中隨機(jī)地選取2人,求至少選到一個(gè)“非常滿意”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某電器銷售公司2018年度各類電器營(yíng)業(yè)收入占比和凈利潤(rùn)占比統(tǒng)計(jì)表:

空調(diào)類

冰箱類

小家電類

其它類

營(yíng)業(yè)收入占比

凈利潤(rùn)占比

則下列判斷中不正確的是( )

A. 該公司2018年度冰箱類電器營(yíng)銷虧損

B. 該公司2018年度小家電類電器營(yíng)業(yè)收入和凈利潤(rùn)相同

C. 該公司2018年度凈利潤(rùn)主要由空調(diào)類電器銷售提供

D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤(rùn)占比將會(huì)降低

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓與拋物線y2x有一個(gè)相同的焦點(diǎn),且該橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過點(diǎn)P(0,1)的直線與該橢圓交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn),若,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , , 分別為, , 的中點(diǎn).

1)求證: 平面;

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).

(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年2月25日,第屆羅馬尼亞數(shù)學(xué)大師賽(簡(jiǎn)稱)于羅馬尼亞首都布加勒斯特閉幕,最終成績(jī)揭曉,以色列選手排名第一,而中國(guó)隊(duì)無(wú)一人獲得金牌,最好成績(jī)是獲得銀牌的第名,總成績(jī)排名第.而在分量極重的國(guó)際數(shù)學(xué)奧林匹克()比賽中,過去拿冠軍拿到手軟的中國(guó)隊(duì),也已經(jīng)有連續(xù)年沒有拿到冠軍了.人們不禁要問“中國(guó)奧數(shù)究竟怎么了?”,一時(shí)間關(guān)于各級(jí)教育主管部門是否應(yīng)該下達(dá)“禁奧令”成為社會(huì)熱點(diǎn).某重點(diǎn)高中培優(yōu)班共人,現(xiàn)就這人“禁奧令”的態(tài)度進(jìn)行問卷調(diào)查,得到如下的列聯(lián)表:

不應(yīng)下“禁奧令”

應(yīng)下“禁奧令”

合計(jì)

男生

5

女生

10

合計(jì)

50

若采用分層抽樣的方法從人中抽出人進(jìn)行重點(diǎn)調(diào)查,知道其中認(rèn)為不應(yīng)下“禁奧令”的同學(xué)共有人.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為對(duì)下“禁奧令”的態(tài)度與性別有關(guān)?請(qǐng)說明你的理由;

(2)現(xiàn)從這人中抽出名男生、名女生,記此人中認(rèn)為不應(yīng)下“禁奧令”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式與數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCDA1B1C1D1 的棱長(zhǎng)為 2,且AC BD 交于點(diǎn)O,E 為棱DD1 中點(diǎn),以A 為原點(diǎn),建立空間直角坐標(biāo)系Axyz,如圖所示.

(Ⅰ)求證:B1O平面EAC

(Ⅱ)若點(diǎn)F EA 上且B1FAE,試求點(diǎn)F 的坐標(biāo);

(Ⅲ)求二面角B1EAC 的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案