【題目】如圖,四邊形是正方形, 平面 , , , 分別為, , 的中點(diǎn).

1)求證: 平面;

2)求平面與平面所成銳二面角的大小;

3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】1見(jiàn)解析23見(jiàn)解析

【解析】試題分析: 建立平面直角坐標(biāo)系,由, , 證得平面

建立空間直角坐標(biāo)系,根據(jù)兩個(gè)平面的法向量所成的角與二面角相等或互補(bǔ),由兩個(gè)平面法向量所成的角求解二面角的大;

假設(shè)存在點(diǎn),由共線向量基本定理得到點(diǎn)的坐標(biāo),其中含有一個(gè)未知量,然后利用直線與直線所成角為轉(zhuǎn)化為兩向量所成的角為,由兩向量的夾角公式求出點(diǎn)的坐標(biāo),得到的點(diǎn)的坐標(biāo)符合題意,說(shuō)明假設(shè)成立,最后得到結(jié)論。

解析:1平面, , 平面,

,又四邊形是正方形,

,故, 兩兩垂直,

如圖,建立空間直角坐標(biāo)系,∵,

, ,

, , ,

, 分別為, , 的中點(diǎn),

, , ,

,平面的一個(gè)法向量為,

又∵,

,又∵平面, 平面.

2 ,

設(shè)為平面的一個(gè)法向量,

,即,取,得,

,

設(shè)為平面的一個(gè)法向量,則,

,取,

,

∴平面與平面所成銳二面角的大小為.

(3)假設(shè)在線段上存在一點(diǎn),使直線與直線所成角為,

設(shè),其中,由,則,

又∵, ,,

∵直線與直線所成角為 ,

,即,解得,

,

∴在線段上存在一點(diǎn),使直線與直線所成角為,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四面體中,.

(1)證明:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】人耳的聽(tīng)力情況可以用電子測(cè)聽(tīng)器檢測(cè),正常人聽(tīng)力的等級(jí)為0-25(分貝),并規(guī)定測(cè)試值在區(qū)間為非常優(yōu)秀,測(cè)試值在區(qū)間為優(yōu)秀.某班50名同學(xué)都進(jìn)行了聽(tīng)力測(cè)試,所得測(cè)試值制成頻率分布直方圖:

(Ⅰ)現(xiàn)從聽(tīng)力等級(jí)為的同學(xué)中任意抽取出4人,記聽(tīng)力非常優(yōu)秀的同學(xué)人數(shù)為,求的分布列與數(shù)學(xué)期望;

(Ⅱ)在(Ⅰ)中抽出的4人中任選一人參加一個(gè)更高級(jí)別的聽(tīng)力測(cè)試,測(cè)試規(guī)則如下:四個(gè)音叉的發(fā)生情況不同,由強(qiáng)到弱的次序分別為1,2,3,4.測(cè)試前將音叉隨機(jī)排列,被測(cè)試的同學(xué)依次聽(tīng)完后給四個(gè)音叉按發(fā)音的強(qiáng)弱標(biāo)出一組序號(hào), , (其中, , , 為1,2,3,4的一個(gè)排列).若為兩次排序偏離程度的一種描述, ,求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面ABCD是矩形,⊥平面,的中點(diǎn),是線段上的點(diǎn).

(1)當(dāng)的中點(diǎn)時(shí),求證:∥平面

(2)當(dāng)= 2:1時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在邊長(zhǎng)為4的正方形ABCD中,E,F(xiàn)分別是邊AB,BC上的點(diǎn)(端點(diǎn)除外),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′(如圖②).

(1)求證:ADEF;

(2)當(dāng)點(diǎn)E,F分別為AB,BC的中點(diǎn)時(shí),求直線AE與直線BD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生在開(kāi)學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開(kāi)學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開(kāi)學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開(kāi)學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開(kāi)學(xué)季內(nèi)的市場(chǎng)需求量, (單位:元)表示這個(gè)開(kāi)學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

(1)根據(jù)直方圖估計(jì)這個(gè)開(kāi)學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為分別為左,右焦點(diǎn),分別為左,右頂點(diǎn),D為上頂點(diǎn),原點(diǎn)到直線的距離為.設(shè)點(diǎn)在第一象限,縱坐標(biāo)為t,且軸,連接交橢圓于點(diǎn).

(1)求橢圓的方程;

(2)(文)若三角形的面積等于四邊形的面積,求直線的方程;

(理)求過(guò)點(diǎn)的圓方程(結(jié)果用t表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)已知橢圓兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-2,0),(2,0),并且經(jīng)過(guò)點(diǎn),求它的標(biāo)準(zhǔn)方程;

(2)已知雙曲線兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-6),(0,6),并且經(jīng)過(guò)點(diǎn)(2,-5),求它的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1:ρ=1,曲線C2(t為參數(shù))

(1)求C1與C2交點(diǎn)的坐標(biāo);

(2)若把C1,C2上各點(diǎn)的縱坐標(biāo)都?jí)嚎s為原來(lái)的一半,分別得到曲線C1′與C2′,寫(xiě)出C1′與C2′的參數(shù)方程,C1與C2公共點(diǎn)的個(gè)數(shù)和C1′與C2′公共點(diǎn)的個(gè)數(shù)是否相同,說(shuō)明你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案