【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)設(shè)函數(shù)圖象上不重合的兩點(diǎn).證明:.(是直線的斜率)
【答案】(1)①當(dāng)時(shí),函數(shù)在上單調(diào)遞增;②當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.(2)證明見解析
【解析】
(1)先由題意,得到函數(shù)定義域,對函數(shù)求導(dǎo),分別討論和兩種情況,解對應(yīng)的不等式,即可得出其單調(diào)性;
(2)根據(jù)斜率公式,由題意,得到,再由,將證明的問題轉(zhuǎn)化為證明,令,即證時(shí),成立,設(shè),對其求導(dǎo),用導(dǎo)數(shù)的方法求其范圍,即可得出結(jié)果.
(1)函數(shù)的定義域?yàn)?/span>,
且
①當(dāng)時(shí),,此時(shí)在單調(diào)遞增;
②當(dāng)時(shí),令可得或(舍),,
由得,由得,
所以在上單調(diào)遞增,在上單調(diào)遞減.
綜上:①當(dāng)時(shí),函數(shù)在上單調(diào)遞增;
②當(dāng)時(shí),函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.
(2)由題意得,
所以
又,
要證成立,
即證:成立,
即證:成立.
令,即證時(shí),成立.
設(shè)
則
所以函數(shù)在上是增函數(shù),
所以,都有,
即,,
所以
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過右焦點(diǎn)作直線交橢圓于,兩點(diǎn),的周長為,點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線、的斜率,,請問是否為定值?若是定值,求出其定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)的圖象與軸交于兩點(diǎn),且,求的取值范圍;
(3)在(2)的條件下,證明:為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的公差d大于0,前n項(xiàng)的和為.已知=18,,,成等比數(shù)列.
(1)求的通項(xiàng)公式;
(2)若對任意的,都有k(+18)≥恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)().若s,t,s>t>1,且,求s,t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩地相距,現(xiàn)計(jì)劃在兩地間以為端點(diǎn)的線段上,選擇一點(diǎn)處建造畜牧養(yǎng)殖場,其對兩地的影響度與所選地點(diǎn)到兩地的距離有關(guān),對地和地的總影響度為對地和地的影響度之和,記點(diǎn)到地的距離為,建在處的畜牧養(yǎng)殖場對地和地的總影響度為.統(tǒng)計(jì)調(diào)查表明:畜牧養(yǎng)殖場對地的影響度與所選地點(diǎn)到地的距離成反比,比例系數(shù)為;對地的影響度與所選地點(diǎn)到地的距離成反比,比例系數(shù)為,當(dāng)畜牧養(yǎng)殖場建在線段中點(diǎn)處時(shí),對地和地的總影響度為.
(1)將表示為的函數(shù),寫出函數(shù)的定義域;
(2)當(dāng)點(diǎn)到地的距離為多少時(shí),建在此處的畜牧養(yǎng)殖場對地和地的總影響度最小?并求出總影響度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列選項(xiàng)中,p是q的必要不充分條件的是( )
A.;方程的曲線是橢圓
B.;對不等式恒成立
C.設(shè)是首項(xiàng)為正數(shù)的等比數(shù)列,公比小于0;對任意的正整數(shù)n,
D.已知空間向量,,;向量a與b的夾角是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項(xiàng)和,是常數(shù)且.
(1)證明:是等差數(shù)列;
(2)證明:以為坐標(biāo)的點(diǎn)落在同一直線上,并求直線方程;
(3)設(shè),是以為圓心,為半徑的圓,求使得點(diǎn)都落在圓外時(shí),的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B是R中兩個子集,對于x∈R,定義:,
①若AB.則對任意x∈R,m(1-n)=______;
②若對任意x∈R,m+n=1,則A,B的關(guān)系為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com