【題目】如圖,已知橢圓: 的離心率為,上、下頂點(diǎn)分別為、,點(diǎn)在橢圓上,且異于點(diǎn)、,直線、與直線: 分別交于點(diǎn)、,且面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求線段的長的最小值.
【答案】(1)(2).
【解析】試題分析:(Ⅰ)由橢圓: 的離心率為,,且面積的最大值為,求出a,b,由此能求出橢圓C的方程;(2)由題設(shè)可以得到直線AP的方程為y﹣1=k1(x﹣0),直線BP的方程為y﹣(﹣1)=k2(x﹣0),求出直線AP與直線l的交點(diǎn)M,直線BP與直線l的交點(diǎn)N,由此能求出線段MN長的最小值.
試題解析:
(1)當(dāng)為左右頂點(diǎn)時(shí), 最大,得,又, ,
,
(2)由題設(shè)可以得到直線的方程為,直線的方程為,
由 ,由
直線與直線的交點(diǎn), 直線與直線的交點(diǎn).
設(shè),則直線的斜率, 的斜率,
又點(diǎn)在橢圓上,所以,
從而有: .
當(dāng)且僅當(dāng)即時(shí)取等號,故線段長的最小值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的方程為,定點(diǎn),點(diǎn)是曲線上的動(dòng)點(diǎn), 為的中點(diǎn).
(1)求點(diǎn)的軌跡的直角坐標(biāo)方程;
(2)已知直線與軸的交點(diǎn)為,與曲線的交點(diǎn)為,若的中點(diǎn)為,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)動(dòng)點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線.
(1)求點(diǎn)的軌跡方程;
(2)若圓心在曲線上的動(dòng)圓過點(diǎn),試證明圓與軸必相交,且截軸所得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了鼓勵(lì)學(xué)生熱心公益,服務(wù)社會(huì),成立了“慈善義工社”.2017年12月,該!按壬屏x工社”為學(xué)生提供了4次參加公益活動(dòng)的機(jī)會(huì),學(xué)生可通過網(wǎng)路平臺(tái)報(bào)名參加活動(dòng).為了解學(xué)生實(shí)際參加這4次活動(dòng)的情況,該校隨機(jī)抽取100名學(xué)生進(jìn)行調(diào)查,數(shù)據(jù)統(tǒng)計(jì)如下表,其中“√”表示參加,“×”表示未參加.
根據(jù)表中數(shù)據(jù)估計(jì),該校4000名學(xué)生中約有120名這4次活動(dòng)均未參加.
(Ⅰ)求的值;
(Ⅱ)從該校4000名學(xué)生中任取一人,試估計(jì)其2017年12月恰參加了2次學(xué)校組織的公益活動(dòng)的概率;
(Ⅲ)已知學(xué)生每次參加公益活動(dòng)可獲得10個(gè)公益積分,任取該校一名學(xué)生,記該生2017年12月獲得的公益積分為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,且an+1﹣3an=3n,(n∈N*),數(shù)列{bn}滿足bn=3﹣nan.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)設(shè),求滿足不等式的所有正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=sin2ax-sin ax·cos ax- (a>0)的圖象與直線y=b相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列.
(1)求a,b的值;
(2)若x0∈,且x0是y=f(x)的零點(diǎn),試寫出函數(shù)y=f(x)在上的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時(shí),求的最小值;
(Ⅱ)若函數(shù)恰有兩個(gè)不同極值點(diǎn).
①求的取值范圍;
②求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示為一正方體的平面展開圖,在這個(gè)正方體中,有下列四個(gè)命題:
①AF⊥GC;
②BD與GC成異面直線且夾角為60;
③BD∥MN;
④BG與平面ABCD所成的角為45.
其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com