【題目】已知在極坐系中,點繞極點順時針旋轉角得到點.為原點,極軸為軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線逆時針旋轉得到曲線.

1)求曲線的直角坐標方程;

2)點的極坐標為,直線過點且與曲線交于兩點,求的最小值.

【答案】1;(214.

【解析】

1)求得點繞極點順時針旋轉得到點,代入曲線上,結合極坐標與直角坐標的互化公式,即可求求解;

2)求得的直角坐標,設的參數(shù)方程為為參數(shù)),代入,利用參數(shù)的幾何意義和三角函數(shù)性質,即可求解.

1)設為曲線是任意一點,

則點繞極點順時針旋轉得到點在曲線上,

又由的直線坐標方程為,代入可得,

整理,所以,

即曲線的方程為.

2)由點的極坐標為,可得的直角坐標為 ,

的參數(shù)方程為為參數(shù)),

代入,整理后可得,

所以,

當且僅當時取等號,此時,符合條件,

的最小值為14.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)響應“綠水青山就是金山銀山”的號召,因地制宜的將該鎮(zhèn)打造成“生態(tài)水果特色小鎮(zhèn)”.經(jīng)調研發(fā)現(xiàn):某珍稀水果樹的單株產(chǎn)量(單位:千克)與施用肥料(單位:千克)滿足如下關系:,肥料成本投入為元,其它成本投入(如培育管理、施肥等人工費)元.已知這種水果的市場售價大約為15元/千克,且銷路暢通供不應求.記該水果樹的單株利潤為(單位:元).

(Ⅰ)求的函數(shù)關系式;

(Ⅱ)當施用肥料為多少千克時,該水果樹的單株利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1中,AB⊥側面BCC1B1ACAB1

1)求證:平面ABC1⊥平面AB1C;

2)若ABBC2,∠BCC160°,求二面角BAC1B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若只有個正整數(shù)解,求的取值范圍;

(2)①求證:方程有唯一實根,且;

②求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為正項數(shù)列的前項和,滿足.

1)求的通項公式;

2)若不等式對任意正整數(shù)都成立,求實數(shù)的取值范圍;

3)設(其中是自然對數(shù)的底數(shù)),求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調增區(qū)間;

2)設的內角、、的對邊分別為,又,且銳角滿足,若,邊的中點,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式組表示的平面區(qū)域為,若函數(shù)的圖象上存在區(qū)域內的點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,PACEAB=CEPA,PA⊥平面ABCD.

1)證明:PE⊥平面DBE;

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2019年鄭開國際馬拉松比賽,于2019331日在鄭州、開封舉行.某學校本著我運動,我快樂,我鍛煉,我提高精神,積極組織學生參加比賽及相關活動,為了了解學生的參與情況,從全校學生中隨機抽取了150名學生,對是否參與的情況進行了問卷調查,統(tǒng)計數(shù)據(jù)如下:

會參與

不會參與

男生

60

40

女生

20

30

1)根據(jù)上表說明,能否有97.5%的把握認為參與馬拉松賽事與性別有關?

2)現(xiàn)從參與問卷調查且參與賽事的學生中,采用按性別分層抽樣的方法選取8人參加2019年馬拉松比賽志愿者宣傳活動,

①求男、女學生各選取多少人;

②若從這8人中隨機選取2人到校廣播站開展2019年賽事宣傳介紹,求恰好選到2名男生的概率.

附:參考公式:,其中

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

同步練習冊答案