【題目】設(shè),是兩個(gè)平面,,是兩條直線,下列命題錯(cuò)誤的是( )
A.如果,,那么.
B.如果,,那么.
C.如果,,,那么.
D.如果內(nèi)有兩條相交直線與平行,那么.
【答案】C
【解析】
對(duì)于A選項(xiàng),由線面垂直的性質(zhì)定理,線面平行的性質(zhì)定理和空間的直線所成的位置關(guān)系可證;對(duì)于B選項(xiàng),由面面平行的性質(zhì)定理可得;對(duì)于C選項(xiàng),與相交或平行,故C選項(xiàng)是錯(cuò)誤的;對(duì)于D選項(xiàng),由面面平行的判定定理可得.
由,是兩個(gè)平面,,是兩條直線,得:
對(duì)于A選項(xiàng), 如果,,那么由線面垂直的性質(zhì)定理,線面平行的性質(zhì)定理和空間的直線所成的位置關(guān)系可證得,故A選項(xiàng)是正確的.
對(duì)于B選項(xiàng),,,由面面平行的性質(zhì)定理可證得,故B選項(xiàng)是正確的.
對(duì)于C選項(xiàng),,,,則與相交或平行,故C選項(xiàng)是錯(cuò)誤的.
對(duì)于D選項(xiàng),內(nèi)有兩條相交直線與平行,由面面平行的判定定理可得,故D選項(xiàng)是正確的.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,是橢圓上一動(dòng)點(diǎn)(與左、右頂點(diǎn)不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.
(1)求橢圓C的方程;
(2)過的直線交橢圓于兩點(diǎn),過作軸的垂線交橢圓與另一點(diǎn)(不與重合).設(shè)的外心為,求證為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大指出中國(guó)的電動(dòng)汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國(guó)正在大力實(shí)施一項(xiàng)將重塑全球汽車行業(yè)的計(jì)劃.2018年某企業(yè)計(jì)劃引進(jìn)新能源汽車生產(chǎn)設(shè)備,通過市場(chǎng)分析,全年需投入固定成本2500萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且.由市場(chǎng)調(diào)研知,每輛車售價(jià)5萬元,且全年內(nèi)生產(chǎn)的車輛當(dāng)年能全部銷售完.
(1)求出2018年的利潤(rùn)L(x)(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤(rùn)=銷售額-成本)
(2)2018年產(chǎn)量為多少百輛時(shí),企業(yè)所獲利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐
個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:
(1)計(jì)算值;
(2)以此樣本的頻率作為概率,求
①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;
②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)與有相同的極值點(diǎn)(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值),求的值;
(2)記.
①若在區(qū)間(為自然對(duì)數(shù)底數(shù))上至少存在一點(diǎn),使得成立,求的取值范圍;
②若函數(shù)圖象存在兩條經(jīng)過原點(diǎn)的切線,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商家統(tǒng)計(jì)了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達(dá)圖,圖中點(diǎn)表示產(chǎn)品2月份銷售額約為20萬元,點(diǎn)表示產(chǎn)品9月份銷售額約為25萬元.
根據(jù)圖中信息,下面統(tǒng)計(jì)結(jié)論錯(cuò)誤的是( )
A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大
C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動(dòng)較小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點(diǎn)為A1,右焦點(diǎn)為F2,過點(diǎn)F2作垂直于x軸的直線交該橢圓于M、N兩點(diǎn),直線A1M的斜率為.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若△A1MN的外接圓在M處的切線與橢圓相交所得弦長(zhǎng)為,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口某天0時(shí)至24時(shí)的水深(米)隨時(shí)間(時(shí))變化曲線近似滿足如下函數(shù)模型().若該港口在該天0時(shí)至24時(shí)內(nèi),有且只有3個(gè)時(shí)刻水深為3米,則該港口該天水最深的時(shí)刻不可能為( )
A.16時(shí)B.17時(shí)C.18時(shí)D.19時(shí)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com