【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c已知b=4,c=5,A=60°.
(1)求邊長a和△ABC的面積;
(2)求sin2B的值.

【答案】(1)(2)

【解析】試題分析:(1)由已知及余弦定理可求 ,進而利用三角形面積公式即可計算得解;(2)由正弦定理可得 ,由 ,可得 為銳角,利用同角三角函數(shù)基本關(guān)系式可求 ,進而利用二倍角的正弦函數(shù)公式即可計算得解.

試題解析:(1)∵b=4,c=5,A=60°.∴由余弦定理可得:a2=b2+c2-2bccosA=16+25-4×5=21,∴a=,

∴S△ABC=bcsinA==

(2)∵由正弦定理可得: ,可得:sinB=
∵b<c,B為銳角,可得:cosB=,∴sin2B=2sinBcosB=2×

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在三棱柱中,側(cè)棱與底面垂直, ,點分別為的中點.

(1)證明: 平面

證明: 平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交作品的件數(shù)按照5天一組分組統(tǒng)計,繪制了頻率分布直方圖(如圖所示).已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數(shù)為12,請解答下列各題.

(1)本次活動共有多少件作品參加評比?

(2)哪組上交的作品數(shù)量最多?有多少件?

(3)經(jīng)過評比,第四組和第六組分別有10件2件作品獲獎,問這兩組哪一組獲獎率較高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

1x,求向量a,c的夾角;

2x時,求函數(shù)f(x)2a·b1的值域

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若, ,求ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,直線 和圓

(Ⅰ)求直線斜率的取值范圍;

(Ⅱ)直線能否將圓分割成弧長的比值為的兩段圓?為什么?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5), [0.5,1),……[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由;

)估計居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從數(shù)列中抽出一項,依原來的順序組成的新叫數(shù)列的一個子列.

(1)寫出數(shù)列的一個是等比數(shù)列的子列;

(2)若是無窮等比數(shù)列,首項,公比,則數(shù)列是否存在一個子列,為無窮等差數(shù)列?若存在,寫出該子列的通項公式;若不存在,證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】實數(shù)滿足不等式,函數(shù)極值點.

(1”為假命題,“真命題,求實數(shù)取值范圍;

(2已知. ”為真命題,并記為,,必要不充分條件,求實數(shù)取值范圍.

查看答案和解析>>

同步練習冊答案