【題目】將圓上每一點的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?/span>,得曲線C.
(Ⅰ)寫出C的參數(shù)方程;
(Ⅱ)設(shè)直線l: 與C的交點為P1,P2,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,求過線段P1 P2的中點且與l垂直的直線的極坐標(biāo)方程.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐,側(cè)面是邊長為的正三角形,且與底面垂直,底面是的菱形, 為的中點.
(1)求證: ;
(2)求點到平面 的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—5:不等式選講
已知.
(1)關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(2)設(shè),且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(Ⅰ)討論的極值點的個數(shù);
(Ⅱ)若對于,總有.(i)求實數(shù)的范圍; (ii)求證:對于,不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的中心在坐標(biāo)原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱中, 分別是的中點, 且,
(1)證明: .
(2)棱上是否存在一點,使得平面與平面所成銳二面角的余弦值為若存在,說明點的位置,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷的奇偶性;
(2)用單調(diào)性的定義證明為上的增函數(shù);
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com