【題目】(本小題滿分10分)選修4—5:不等式選講

已知

1)關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

2)設(shè),且,求證:

【答案】1;(2)證明見(jiàn)解析.

【解析】試題分析:(1)不等式恒成立,不等式或兩個(gè)字母是分離的,因此有小于或等于最小值,由絕對(duì)值的幾何意義可求得的最小值(表示數(shù)軸上的點(diǎn)與點(diǎn)和點(diǎn)的距離之和,最小值為2),解不等式即得的取值范圍;(2)問(wèn)題實(shí)質(zhì)上就是證明不等式,觀察已知發(fā)現(xiàn)當(dāng)時(shí),等號(hào)成立,由此我們湊出基本不等式,即,結(jié)論得證.

試題解析:(1)依據(jù)絕對(duì)值的幾何意義可知函數(shù)表示數(shù)軸上點(diǎn)P)到點(diǎn)A)和B)兩點(diǎn)的距離,其最小值為

不等式恒成立只需,解得

2只需證明: 成立即可.

;

于是

故要證明的不等式成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,,設(shè)函數(shù)

1)若函數(shù)的圖象關(guān)于直線對(duì)稱,且時(shí),求函數(shù)的單調(diào)增區(qū)間;

2)在(1)的條件下,當(dāng)時(shí),函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一數(shù)集的任一元素的倒數(shù)仍在該集合中,則稱該數(shù)集為“可倒數(shù)集”.

(1)判斷集合A={-1,1,2}是否為可倒數(shù)集;

(2)試寫出一個(gè)含3個(gè)元素的可倒數(shù)集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為: (t為參數(shù)),它與曲線C: 相交于A,B兩點(diǎn).

(1)求|AB|的長(zhǎng);

(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,角的對(duì)邊分別為,

)若,求面積的最大值;

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將圓上每一點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的,得曲線C.

)寫出C的參數(shù)方程;

)設(shè)直線l C的交點(diǎn)為P1,P2,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求過(guò)線段P1 P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校隨機(jī)調(diào)查80名學(xué)生,以研究學(xué)生愛(ài)好羽毛球運(yùn)動(dòng)與性別的關(guān)系,得到下面的 列聯(lián)表:

愛(ài)好

不愛(ài)好

合計(jì)

20

30

50

10

20

30

合計(jì)

30

50

80

(Ⅰ)將此樣本的頻率視為總體的概率,隨機(jī)調(diào)查本校的3名學(xué)生,設(shè)這3人中愛(ài)好羽毛球運(yùn)動(dòng)的人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅱ)根據(jù)表3中數(shù)據(jù),能否認(rèn)為愛(ài)好羽毛球運(yùn)動(dòng)與性別有關(guān)?

0.050

0.010

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yf(x)是定義在R上的奇函數(shù),x<0時(shí),f(x)12x.

(1)求函數(shù)f(x)的解析式;

(2)畫出函數(shù)f(x)的圖像;

(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)若曲線與曲線在點(diǎn)處有相同的切線,試討論函數(shù)的單調(diào)性;

(2)若,函數(shù)上為增函數(shù),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案