【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為: (t為參數(shù)),它與曲線C: 相交于A,B兩點(diǎn).

(1)求|AB|的長;

(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)P的極坐標(biāo)為,求點(diǎn)P到線段AB中點(diǎn)M的距離.

【答案】(1);(2)

【解析】試題分析:

(1)利用題意結(jié)合弦長公式可得弦長為

(2)利用題意,所求的長度為 .

試題解析:

(1)直線的參數(shù)方程可化為,

對應(yīng)的坐標(biāo)代入曲線方程并化簡得7t2+60t﹣125=0,

設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則

(2)由P的極坐標(biāo)為,可得xp==﹣2, =2.

∴點(diǎn)P在平面直角坐標(biāo)系下的坐標(biāo)為(﹣2,2),

根據(jù)中點(diǎn)坐標(biāo)的性質(zhì)可得AB中點(diǎn)M對應(yīng)的參數(shù)為

∴由t的幾何意義可得點(diǎn)P到M的距離為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn)且離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓上的點(diǎn),直線為坐標(biāo)原點(diǎn))的斜率之積為.若動點(diǎn)滿足,試探究是否存在兩個定點(diǎn),使得為定值若存在,的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

,曲線

過點(diǎn)

,且在點(diǎn)

處的切線方程為

.

(1)求

的值;

(2)證明:當(dāng)

時,

;

(3)若當(dāng)

時,

恒成立,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)上為增函數(shù).

(1)求實(shí)數(shù)的取值范圍;

(2)若函數(shù)的圖象有三個不同的交點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中, ,D是棱AC的中點(diǎn),且.

(1)求證:

(2)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4—5:不等式選講

已知

1)關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍;

2)設(shè),且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的8道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出4道題進(jìn)行測試,只有選中的4個題目均答對才能入選;
(Ⅰ)求甲恰有2個題目答對的概率及甲答對題目數(shù)的數(shù)學(xué)期望與方差。
(Ⅱ)求乙答對的題目數(shù)X的分布列。

查看答案和解析>>

同步練習(xí)冊答案