【題目】如圖,邊長(zhǎng)為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點(diǎn).

(I)證明:AM⊥PM ;

(II)求二面角P-AM-D的大小.

【答案】(1)見(jiàn)解析; (2)45°.

【解析】

(Ⅰ)以D點(diǎn)為原點(diǎn),分別以直線DADCx軸、y軸,建立如圖所示的空間直角坐標(biāo)系,求出的坐標(biāo),利用數(shù)量積為零,即可證得結(jié)果;(Ⅱ)求出平面PAM與平面ABCD的法向量,代入公式即可得到結(jié)果.

(I)證明:D點(diǎn)為原點(diǎn),分別以直線DA、DCx軸、y軸,建立如圖所示的空間直角坐標(biāo)系,依題意,可得

,∴AMPM .

(II)設(shè),且平面PAM,則

, ,

,得;取,顯然平面ABCD

,結(jié)合圖形可知,二面角PAMD45°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)若不等式對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為菱形, 且的中點(diǎn).

(1)求證:∥平面;

(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有限集S中的元素個(gè)數(shù)記作,設(shè)A、B是有限集合,給出下列命題:

1的充分不必要條件是;

2的必要不充分條件是

3的充要條件是

其中假命題是(寫(xiě)題號(hào))________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家邊防安全條例規(guī)定:當(dāng)外輪與我國(guó)海岸線的距離小于或等于海里時(shí),就會(huì)被警告.如圖,設(shè),是海岸線上距離海里的兩個(gè)觀察站,滿足,一艘外輪在點(diǎn)滿足.

(1),滿足什么關(guān)系時(shí),就該向外輪發(fā)出警告令其退出我國(guó)海域?

(2)當(dāng)時(shí),間處于什么范圍內(nèi)可以避免使外輪進(jìn)入被警告區(qū)域?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.

組號(hào)

分組

頻數(shù)

頻率

第1組

5

第2組

第3組

30

第4組

20

第5組

10

(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;

(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;

(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,過(guò)橢圓右頂點(diǎn)的直線交橢圓于另外一點(diǎn),已知點(diǎn)的縱坐標(biāo)為.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點(diǎn)分別在直線的上、下方,設(shè)四邊形的面積為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)時(shí),,

)求,,

)猜想的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿足,,數(shù)列滿足,,且.

1)求數(shù)列的通項(xiàng)公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項(xiàng)公式;

3)若,數(shù)列的前項(xiàng)和為,對(duì)任意的,都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案