【題目】如圖,拋物線C1:x2=4y,C2:x2=﹣2py(p>0),點M(x0 , y0)在拋物線C2上,過M作C1的切線,切點為A,B(M為原點O時,A,B重合于O),當x0=1﹣ 時,切線MA的斜率為﹣

(1)求P的值;
(2)當M在C2上運動時,求線段AB中點N的軌跡方程(A,B重合于O時,中點為O).

【答案】
(1)解:因為拋物線C1:x2=4y上任意一點(x,y)的切線斜率為y′= ,且切線MA的斜率為﹣ ,

所以設(shè)A點坐標為(x,y),得 ,解得x=﹣1,y= = ,點A的坐標為(﹣1, ),

故切線MA的方程為y=﹣ (x+1)+

因為點M(1﹣ ,y0)在切線MA及拋物線C2上,于是

y0=﹣ (2﹣ )+ =﹣

∴y0=﹣ =﹣

解得p=2


(2)解:設(shè)N(x,y),A(x1, ),B(x2, ),x1≠x2,由N為線段AB中點知x= ③,y= =

切線MA,MB的方程為y= (x﹣x1)+ ,⑤;y= (x﹣x2)+ ⑥,

由⑤⑥得MA,MB的交點M(x0,y0)的坐標滿足x0= ,y0=

因為點M(x0,y0)在C2上,即x02=﹣4y0,所以x1x2=﹣

由③④⑦得x2= y,x≠0

當x1=x2時,A,B丙點重合于原點O,A,B中點N為O,坐標滿足x2= y

因此中點N的軌跡方程為x2= y


【解析】(1)利用導(dǎo)數(shù)的幾何意義,先表示出切線方程,再由M在拋物線上及在直線上兩個前提下,得到相應(yīng)的方程,解出p值.(2)由題意,可先設(shè)出A,B兩個端點的坐標及中點的坐標,再由中點坐標公式建立方程,直接求解出中點N的軌跡方程

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=eax﹣x,其中a≠0.
(1)若對一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函數(shù)f(x)的圖象上取定兩點A(x1 , f(x1)),B(x2 , f(x2)(x1<x2),記直線AB的斜率為K,問:是否存在x0∈(x1 , x2),使f′(x0)>k成立?若存在,求x0的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為某旅游區(qū)各景點的分布圖,圖中一條帶箭頭的線段表示一段有方向的路,試計算順著箭頭方向,從A到H不同的旅游路線的條數(shù),這個數(shù)是(  )

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市出租車的計價標準是:4km以內(nèi)(含4km10元,超過4km且不超過18km的部分1.2/km,超過18km的部分1.8/km,不計等待時間的費用.

1)如果某人乘車行駛了10km,他要付多少車費?

2)試建立車費y(元)與行車里程xkm)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面四邊形中, , ,將沿折起,使得平面平面,如圖.

(1)求證: ;

(2)若中點,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標準方程.并判斷點M1(2,3),M2(2,4)與圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價與上市時間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時間的函數(shù)關(guān)系式

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有2只紅球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.

(Ⅰ)若抽取后又放回,抽3次.

(ⅰ)分別求恰2次為紅球的概率及抽全三種顏色球的概率;

(ⅱ)求抽到紅球次數(shù)的數(shù)學(xué)期望及方差.

(Ⅱ)若抽取后不放回,寫出抽完紅球所需次數(shù)的分布列.

查看答案和解析>>

同步練習(xí)冊答案