【題目】已知橢圓:的左右焦點(diǎn)分別是,拋物線與橢圓有相同的焦點(diǎn),點(diǎn)為拋物線與橢圓在第一象限的交點(diǎn),且滿足

(1)求橢圓的方程;

(2)與拋物線相切于第一象限的直線,與橢圓交于兩點(diǎn),與軸交于點(diǎn),線段的垂直平分線與軸交于點(diǎn),求直線斜率的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】

(1)首先可以通過拋物線與橢圓有相同的焦點(diǎn)得出橢圓的焦點(diǎn)坐標(biāo),然后通過列出等式并解出的值,最后帶入拋物線方程中即可得出結(jié)果;

(2)首先可以設(shè)出切點(diǎn)坐標(biāo)并寫出切線方程,然后將切線方程與橢圓方程聯(lián)立,設(shè)兩點(diǎn)坐標(biāo)為并根據(jù)切線方程與橢圓交于兩點(diǎn)并求出的值,然后根據(jù)的值寫出的中點(diǎn)坐標(biāo)以及的垂直平分線方程,最后寫出并得出結(jié)果.

(1)因?yàn)閽佄锞與橢圓有相同的焦點(diǎn),

所以橢圓的焦點(diǎn),,

設(shè)點(diǎn)P的坐標(biāo)為,解得(舍去),

點(diǎn)坐標(biāo)代入拋物線方程式可得,又,

聯(lián)立可解得,所以橢圓的方程為;

(2)設(shè)與拋物線相切的切點(diǎn)坐標(biāo)為,

將拋物線轉(zhuǎn)化為可知,即切線斜率為,

通過點(diǎn)斜式方程可知直線,

整理得直線,與軸交點(diǎn)坐標(biāo)

與橢圓方程聯(lián)立可得

設(shè),所以,的中點(diǎn)坐標(biāo)為,

所以的垂直平分線方程為,

,

因?yàn)?/span>所以,當(dāng)且僅當(dāng)時“”號,此時取最小值,最小值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,我國PM2.5標(biāo)準(zhǔn)采用世界衛(wèi)生組織設(shè)定的最寬限值,PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米及其以上空氣質(zhì)量為超標(biāo).

某試點(diǎn)城市環(huán)保局從該市市區(qū)2016年全年每天的PM2.5監(jiān)測數(shù)據(jù)中隨機(jī)抽取6天的數(shù)據(jù)作為樣本,監(jiān)測值莖葉圖(十位為莖,個位為葉)如圖所示,若從這6天的數(shù)據(jù)中隨機(jī)抽出2,

(1)求恰有一天空氣質(zhì)量超標(biāo)的概率;

(2)求至多有一天空氣質(zhì)量超標(biāo)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,如果對于定義域內(nèi)的任意實(shí)數(shù),對于給定的非零常數(shù),總存在非零常數(shù),恒有成立,則稱函數(shù)上的級類增周期函數(shù),周期為,若恒有成立,則稱函數(shù)上的級類周期函數(shù),周期為.

1)已知函數(shù)上的周期為12級類增周期函數(shù),求實(shí)數(shù)的取值范圍;

2)已知,級類周期函數(shù),且上的單調(diào)遞增函數(shù),當(dāng)時,,求實(shí)數(shù)的取值范圍;

3)是否存在實(shí)數(shù),使函數(shù)上的周期為級類周期函數(shù),若存在,求出實(shí)數(shù)的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把五個標(biāo)號為15的小球全部放入標(biāo)號為14的四個盒子中,并且不許有空盒,那么任意一個小球都不能放入標(biāo)有相同標(biāo)號的盒子中的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△的三個內(nèi)角、、所對應(yīng)的邊分別為、、,復(fù)數(shù),,(其中是虛數(shù)單位),且.

(1)求證:,并求邊長的值;

(2)判斷△的形狀,并求當(dāng)時,角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條相交線段、的四個端點(diǎn)都在橢圓上,其中直線的方程為,直線的方程為.

(1)若,,求的值;

(2)探究:是否存在常數(shù),當(dāng)變化時,恒有?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , ,

,點(diǎn)在線段上,且, , 平面.

1)求證:平面平面

2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)為自然對數(shù)的底數(shù))

1)求的單調(diào)區(qū)間,若有最值,請求出最值;

2)是否存在正常數(shù),使的圖象有且只有一個公共點(diǎn),且在該公共點(diǎn)處有共同的切線?若存在,求出的值,以及公共點(diǎn)坐標(biāo)和公切線方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案