【題目】如圖,在四棱錐中,四邊形是直角梯形,,,底面,,,,是的中點.
(1)求證:;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,過橢圓的焦點且垂直于軸的直線被橢圓截得的弦長為.
(1)求橢圓的方程;
(2)設點均在橢圓上,點在拋物線上,若的重心為坐標原點,且的面積為,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】BMI指數(shù)(身體質量指數(shù),英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標準,BMI=體重(kg)/身高(m)的平方.根據(jù)中國肥胖問題工作組標準,當BMI≥28時為肥胖.某地區(qū)隨機調(diào)查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調(diào)查者的頻率分布直方圖如下:
(1)求被調(diào)查者中肥胖人群的BMI平均值;
(2)填寫下面列聯(lián)表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計 | |
高血壓 | |||
非高血壓 | |||
合計 |
附:,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司計劃投資開發(fā)一種新能源產(chǎn)品,預計能獲得10萬元1000萬元的收益.現(xiàn)準備制定一個對開發(fā)科研小組的獎勵方案:獎金(單位:萬元)隨收益(單位:萬元)的增加而增加,且獎金總數(shù)不超過9萬元,同時獎金總數(shù)不超過收益的.
(Ⅰ)若建立獎勵方案函數(shù)模型,試確定這個函數(shù)的定義域、值域和的范圍;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:①;②.試分析這兩個函數(shù)模型是否符合公司的要求?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx,g(x)=,
(1)求f(x)的最小值;
(2)對任意,都有恒成立,求實數(shù)a的取值范圍;
(3)證明:對一切,都有成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為.點在橢圓上,點,,的面積為,為坐標原點.
(1)求橢圓的標準方程;
(2)若直線交橢圓于,兩點,直線的斜率為,直線的斜率為,且,證明:的面積是定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結論:
;平面;
三棱錐的體積為定值;異面直線所成的角為定值,
其中正確結論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線的準線為,其焦點為F,點B是拋物線C上橫坐標為的一點,若點B到的距離等于.
(1)求拋物線C的方程,
(2)設A是拋物線C上異于頂點的一點,直線AO交直線于點M,拋物線C在點A處的切線m交直線于點N,求證:以點N為圓心,以為半徑的圓經(jīng)過軸上的兩個定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com