(本小題滿分14分)設(shè)函數(shù),的兩個極值點為,線段的中點為.
(1) 如果函數(shù)為奇函數(shù),求實數(shù)的值;當(dāng)時,求函數(shù)圖象的對稱中心;
(2) 如果點在第四象限,求實數(shù)的范圍;
(3) 證明:點也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.


(1)(1,0)
(2)
(3)略

解析解:(1)【法一】因為為奇函數(shù),所以,
得:.
當(dāng)時,,
,則為奇函數(shù). …………4分
【法二】,恒成立,
,
求得.
當(dāng)時,,該圖象可由奇函數(shù)的圖象向

得:    . …………9分
(3)由(2)得點

=,所以點也在函數(shù)的圖象上.
【法一】設(shè)為函數(shù)的圖象上任意一點,
關(guān)于的對稱點為


對稱中心為.
把函數(shù)的圖象按向量
平移后得的圖象,
 為函數(shù)的對稱中心. …………14分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
用總長14.8m的鋼條做一個長方體容器的框架,如果所做容器的底面的一邊長比另一邊長多0.5m,那么高是多少時容器的容積最大?并求出它的最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù)若函數(shù)上恰有兩個不同零點,求實數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從AB的映射.
(1)若B中每一元素都有原象,這樣不同的f有多少個?
(2)若B中的元素0必?zé)o原象,這樣的f有多少個?
(3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題満分14分)
已知上是增函數(shù),在[0,2]上是減函數(shù),且方程有三個根,它們分別為
(1)求c的值;
(2)求證
(3)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù), 其中為常數(shù),且函數(shù)圖像過原點.
(1)      求的值;
(2)      證明函數(shù)在[0,2]上是單調(diào)遞增函數(shù);
(3)      已知函數(shù), 求函數(shù)的零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分分)
已知函數(shù).(為常數(shù),
(Ⅰ)若是函數(shù)的一個極值點,求的值;
(Ⅱ)求證:當(dāng)時,上是增函數(shù);
(Ⅲ)若對任意的,總存在,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
已知是奇函數(shù)
⑴、求的定義域;
⑵、求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)
(1)當(dāng)時,求函數(shù)的值域;
(2)若關(guān)于的方程有解,求的取值范圍

查看答案和解析>>

同步練習(xí)冊答案