(12分)已知集合A={a1,a2,a3,a4},B={0,1,2,3},f是從AB的映射.
(1)若B中每一元素都有原象,這樣不同的f有多少個(gè)?
(2)若B中的元素0必?zé)o原象,這樣的f有多少個(gè)?
(3)若f滿足f(a1)+f(a2)+f(a3)+f(a4)=4,這樣的f又有多少個(gè)?

(1)顯然對應(yīng)是一一對應(yīng)的,即為a1找象有4種方法,a2找象有3種方法,a3找象有2種方法,a4找象有1種方法,所以不同的f共有4×3×2×1=24(個(gè)).
(2)0必?zé)o原象,1,2,3有無原象不限,所以為A中每一元素找象時(shí)都有3種方法.所以不同的f共有34=81(個(gè)).
(3)分為如下四類:
第一類,A中每一元素都與1對應(yīng),有1種方法;
第二類,A中有兩個(gè)元素對應(yīng)1,一個(gè)元素對應(yīng)2,另一個(gè)元素與0對應(yīng),有C·C=12種方法;
第三類,A中有兩個(gè)元素對應(yīng)2,另兩個(gè)元素對應(yīng)0,有C·C=6種方法;
第四類,A中有一個(gè)元素對應(yīng)1,一個(gè)元素對應(yīng)3,另兩個(gè)元素與0對應(yīng),有C·C=12種方法.
所以不同的f共有1+12+6+12=31(個(gè)).

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

.設(shè)函數(shù)。
(Ⅰ)求的解析式及定義域。(Ⅱ)求的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)f(x)=是R上的奇函數(shù).
(1)求a的值;
(2)求f(x)的反函數(shù)f-1(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.已知函數(shù)
(1)求證:在(0,+∞)上是增函數(shù);
(2)若在(0,+∞)上恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/2/1h4rr3.gif" style="vertical-align:middle;" />。
(1)求函數(shù)的值域;
(2)求函數(shù)的反函數(shù)。(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)設(shè)函數(shù),的兩個(gè)極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時(shí),求函數(shù)圖象的對稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
  已知:函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),為實(shí)數(shù)).
 。1)當(dāng)時(shí),求的解析式;
 。2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
 。3)是否存在,使得當(dāng)有最大值1?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的最大值和最小正周期;    
(2)設(shè)A,B,C為三個(gè)內(nèi)角,若,,且C為銳角,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)
討論a,b的取值對一次函數(shù)y=ax+b單調(diào)性和奇偶性的影響,并畫出草圖。

查看答案和解析>>

同步練習(xí)冊答案