【題目】在矩形中,,,點(diǎn)是線段上靠近點(diǎn)的一個(gè)三等分點(diǎn),點(diǎn)是線段上的一個(gè)動點(diǎn),且.如圖,將沿折起至,使得平面平面.

(1)當(dāng)時(shí),求證:

(2)是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請說明理由.

【答案】(1)見解析(2)

【解析】試題分析: (1) 當(dāng)時(shí),點(diǎn)的中點(diǎn),由已知證出,根據(jù)面面垂直的性質(zhì)定理證得平面,進(jìn)而證得結(jié)論;(2) 以為原點(diǎn),的方向?yàn)?/span>軸,軸的正方向建立如圖所示空間直角坐標(biāo)系.寫出各點(diǎn)坐標(biāo),求出平面的法向量,根據(jù)線面角的公式求出結(jié)果.

試題解析:

(1)當(dāng)時(shí),點(diǎn)的中點(diǎn).

.

,∴.

,,,

.

.

又平面平面,平面平面,平面

平面.

平面,∴.

(2)以為原點(diǎn),的方向?yàn)?/span>軸,軸的正方向建立如圖所示空間直角坐標(biāo)系.

.

的中點(diǎn),

,∴,

∴ 易證得平面

,∴,∴.

,.

設(shè)平面的一個(gè)法向量為,

,則.

設(shè)與平面所成的角為

,

解得(舍去)

∴存在實(shí)數(shù),使得與平面所成的角的正弦值為,此時(shí).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),;

1)寫出函數(shù)的最小正周期;

2)請?jiān)谙旅娼o定的坐標(biāo)系上用五點(diǎn)法畫出函數(shù)在區(qū)間的簡圖;

3)指出該函數(shù)的圖象可由的圖象經(jīng)過怎樣的平移和伸縮變換得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知角α=45°,

(1)在-720°~0°范圍內(nèi)找出所有與角α終邊相同的角β;

(2)設(shè)集合,判斷兩集合的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求曲線的直角坐標(biāo)方程及曲線上的動點(diǎn)到坐標(biāo)原點(diǎn)的距離的最大值;

(Ⅱ)若曲線與曲線相交于,兩點(diǎn),且與軸相交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC .點(diǎn)D,EN分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)設(shè)關(guān)于的方程的兩個(gè)不等實(shí)根,求證:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)用五點(diǎn)法畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:

0

π

2π

x

0

4

-4

0

1)請將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)fx)的解析式;

2)將圖象上所有點(diǎn)向左平行移動θ)個(gè)單位長度,得到的圖象.圖象的一個(gè)對稱中心為,求θ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評價(jià)某個(gè)維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

男生

等級

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

5

表二:女生

女生

等級

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

3

(1)求,的值;

(2)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;

(3)由表中統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

45

參考公式:,其中.

參考數(shù)據(jù):

0.01

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解人們對延遲退休年齡政策的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(I)由頻率分布直方圖估計(jì)年齡的眾數(shù)和平均數(shù);

(II)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對延遲退休年齡政策的支持度有差異;

參考數(shù)據(jù):

(III)若以45歲為分界點(diǎn),從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動.現(xiàn)從這8人中隨機(jī)抽2.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.

查看答案和解析>>

同步練習(xí)冊答案