【題目】如圖,四棱錐P-ABCD中,PA⊥底面ABCDAD∥BC,ABADAC=3,PABC=4,M為線段AD上一點,AM=2MD,NPC的中點.

(Ⅰ)證明MN∥平面PAB;

(Ⅱ)求四面體N-BCM的體積.

【答案】(Ⅰ)見解析;(Ⅱ)

【解析】

1)取BC中點E,連結(jié)EN,EM。易得四邊形ABEM是平行四邊形,進而平面NEM∥平面PAB,∴MN∥平面PAB.(2)設(shè)AC中點F,則VN-BCM。求出SBCM面積,算SBCM面積時高時構(gòu)造一個等高的△MEG ,NF=PA=2,帶入即可。

(Ⅰ)取BC中點E,連結(jié)EN,EM,∵N為PC的中點,∴NE是△PBC的中位線

∴NE∥PB,又∵AD∥BC,∴BE∥AD,

∵AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,

∴BE=BC=AM=2,∴四邊形ABEM是平行四邊形,

∴EM∥AB,∴平面NEM∥平面PAB,∵MN平面NEM,∴MN∥平面PAB.

(Ⅱ)取AC中點F,連結(jié)NF,∵NF是△PAC的中位線,∴NF∥PA,NF=PA=2,

又∵PA⊥面ABCD,∴NF⊥面ABCD,如圖,延長BC至G,使得CG=AM,連結(jié)GM,

∵AMCG,∴四邊形AGCM是平行四邊形,∴AC=MG=3,

又∵ME=3,EC=CG=2,∴△MEG的高h=,

∴SBCM×BC×h×4×=2

∴四面體N-BCM的體積VN-BCM.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右頂點為A,上頂點為B.已知橢圓的離心率為,

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點,與直線交于點M,且點P,M均在第四象限.若的面積是面積的2倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市舉行中學生詩詞大賽,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

Ⅰ)求獲得復賽資格的人數(shù);

Ⅱ)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機抽取人參加學校座談交流,那么從得分在區(qū)間各抽取多少人?

Ⅲ)從(Ⅱ)抽取的人中,選出人參加全市座談交流,設(shè)表示得分在區(qū)間中參加全市座談交流的人數(shù),求的分布列及數(shù)學期望EX.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱 中,DA1B1的中點,ABBC2,,則異面直線BDAC所成的角為(  )

A. 30°B. 45°C. 60°D. 90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 過點,離心率為.

1求橢圓的方程;

2 是過點且互相垂直的兩條直線,其中交圓 兩點, 交橢圓于另一個點,求面積取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的方程為.

(1)求交點的直角坐標;

(2)過原點作直線,使, 分別相交于點, 與點均不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場銷售某種品牌的空調(diào)器,每周周初購進一定數(shù)量的空調(diào)器,商場每銷售一臺空調(diào)器可獲利500元,若供大于求,則每臺多余的空調(diào)器需交保管費100元;若供不應求,則可從其他商店調(diào)劑供應,此時每臺空調(diào)器僅獲利潤200元。

若該商場周初購進20臺空調(diào)器,求當周的利潤單位:元關(guān)于當周需求量n單位:臺,的函數(shù)解析式;

該商場記錄了去年夏天共10周空調(diào)器需求量n單位:臺,整理得下表:

周需求量n

18

19

20

21

22

頻數(shù)

1

2

3

3

1

以10周記錄的各需求量的頻率作為各需求量發(fā)生的概率,若商場周初購進20臺空調(diào)器,X表示當周的利潤單位:元,求X的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺機床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:

測試指標

[85,90

[90,95

[95100

[100,105

[105,110

甲機床

8

12

40

32

8

乙機床

7

18

40

29

6

1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;

2)甲機床生產(chǎn)1件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元,假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的利潤(單位:元);

3)從甲、乙機床生產(chǎn)的零件指標在[9095)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任意抽取2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)2017年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力逐年下降,若不能進行技術(shù)改造,預測從2018年起每年比上一年純利潤減少20萬元,2018年初該企業(yè)一次性投入資金600萬元進行技術(shù)改造,預測在未扣除技術(shù)改造資金的情況下,第年(以2018年為第一年)的利潤為萬元(為正整數(shù)).

(1)設(shè)從今年起的前年,若該企業(yè)不進行技術(shù)改造的累計純利潤為萬元,進行技術(shù)改造后的累計純利潤為萬元(須扣除技術(shù)改造資金),求,的表達式;

(2)依上述預測,從2018年起該企業(yè)至少經(jīng)過多少年,進行技術(shù)改造后的累計利潤超過不進行技術(shù)改造的累計純利潤?

查看答案和解析>>

同步練習冊答案