【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個開學(xué)季內(nèi),每售出1個該產(chǎn)品獲利潤5元,未售出的產(chǎn)品,每個虧損3元.根據(jù)歷史資料,得到開學(xué)季市場需求量的頻率分布直方圖如圖所示.該同學(xué)為這個開學(xué)季購進(jìn)了160個該產(chǎn)品,以,單位:個)表示這個開學(xué)季內(nèi)的市場需求量.

(1)根據(jù)直方圖估計這個開學(xué)季內(nèi)市場需求量的中位數(shù);

(2)根據(jù)直方圖估計利潤不少于640元的概率.

【答案】(1);(2)0.7.

【解析】試題分析:(1)利用頻率分布直方圖得到需求量的中位數(shù);(2)利用頻率分布直方圖估計利潤不少于640元的概率.

試題解析:

(1)需求量的中位數(shù)為,則根據(jù)直方圖知

解得:

(2)設(shè)利潤不少于640元為事件,

當(dāng)時,利潤為:

當(dāng)時,利潤為:

,解得:

∴根據(jù)直方圖的估計值為:

∴利潤不少于640元的概率為0.7.

點(diǎn)睛: 利用頻率分布直方圖求眾數(shù)、中位數(shù)與平均數(shù)時,易出錯,應(yīng)注意區(qū)分這三者.在頻率分布直方圖中:(1)最高的小長方形底邊中點(diǎn)的橫坐標(biāo)即是眾數(shù);(2)中位數(shù)左邊和右邊的小長方形的面積和是相等的;(3)平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點(diǎn)的橫坐標(biāo)之和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若三個內(nèi)角A,B,C成等差數(shù)列,且a= ,b= ,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一河南旅游團(tuán)到安徽旅游.看到安徽有很多特色食品,其中水果類較有名氣的有:懷遠(yuǎn)石榴、碭山梨、徽州青棗等19種,點(diǎn)心類較有名氣的有:一品玉帶糕、徽墨酥、八公山大救駕等38種,小吃類較有名氣的有:符離集燒雞、無為熏鴨、合肥龍蝦等57種.該旅游團(tuán)的游客決定按分層抽樣的方法從這些特產(chǎn)中買6種帶給親朋品嘗.
(1)求應(yīng)從水果類、點(diǎn)心類、小吃類中分別買回的種數(shù);
(2)若某游客從買回的6種特產(chǎn)中隨機(jī)抽取2種送給自己的父母,
①列出所有可能的抽取結(jié)果;
②求抽取的2種特產(chǎn)均為小吃的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的函數(shù).

(1)當(dāng)時,求函數(shù)在點(diǎn)處的切線方程;

(2)設(shè),討論函數(shù)的單調(diào)區(qū)間;

(3)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,現(xiàn)要在一塊半徑為1m,圓心角為 的扇形紙報AOB上剪出一個平行四邊形MNPQ,使點(diǎn)P在弧AB上,點(diǎn)Q在OA上,點(diǎn)M、N在OB上,設(shè)∠BOP=θ,平行四邊形MNPQ的面積為S.
(1)求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值及相應(yīng)的θ角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,AC=BC= AB,四邊形ABED是邊長為a的正方形,平面ABED⊥平面ABC,若G、F分別是EC、BD的中點(diǎn).

(1)求證:GF∥平面ABC;
(2)求證:平面EBC⊥平面ACD;
(3)求幾何體ADEBC的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),其中為自然對數(shù)的底數(shù), .

(1)判斷函數(shù)的單調(diào)性,并說明理由;

(2)若,不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)為Sn , 點(diǎn)(n, ),(n∈N*)均在函數(shù)y=3x﹣2的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)bn= ,Tn為數(shù)列{bn}的前n項(xiàng)和,求使得Tn 對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點(diǎn)中,相鄰兩個交點(diǎn)之間的距離為 ,且圖象上一個最低點(diǎn)為 . (Ⅰ)求f(x)的解析式;
(Ⅱ)當(dāng) ,求f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案