【題目】已知函數(shù),其中.
(1)若時(shí),函數(shù)有兩個(gè)極值點(diǎn),求的取值范圍,并證明;
(2)若時(shí),不等式對(duì)于任意總成立,求實(shí)數(shù)的取值范圍.
【答案】(1);證明詳見(jiàn)解析;(2).
【解析】
(1)根據(jù)函數(shù)有兩個(gè)極值點(diǎn)可得在上有兩個(gè)不同的零點(diǎn),也就是方程有兩個(gè)不等實(shí)根,用判別式可求實(shí)數(shù)的取值范圍,再利用韋達(dá)定理用來(lái)表示,結(jié)合的范圍可證.
(2)對(duì)于任意總成立等價(jià)于對(duì)于總成立,設(shè),利用導(dǎo)數(shù)可求,從而可求的取值范圍.
解:(1),,其定義域?yàn)?/span>.
由已知,在上有兩個(gè)零點(diǎn),
即方程有兩個(gè)不等實(shí)根,
,結(jié)合得,.
由二次方程根與系數(shù)的關(guān)系知,,
.
又由于,故,
故.
(2)當(dāng)時(shí),,
注意到時(shí)總成立,得.
又不等式等價(jià)于,即對(duì)于總成立.
設(shè),則,
設(shè),則,
當(dāng)時(shí),是減函數(shù);
當(dāng)時(shí),是增函數(shù).
所以,故在是增函數(shù),
,故,結(jié)合,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
在某次考試中,從甲乙兩個(gè)班各抽取10名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì)分析,兩個(gè)班成績(jī)的莖葉圖如圖所示,成績(jī)不小于90分的為及格.
(1)用樣本估計(jì)總體,請(qǐng)根據(jù)莖葉圖對(duì)甲乙兩個(gè)班級(jí)的成績(jī)進(jìn)行比較.
(2)求從甲班10名學(xué)生和乙班10名學(xué)生中各抽取一人,已知有人及格的條件下乙班同學(xué)不及格的概率;
(3)從甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人數(shù)記為X,求X的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;
(3)在(2)的條件下,經(jīng)過(guò)點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問(wèn):點(diǎn)是否在直線上,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在改革開(kāi)放40年成就展上某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產(chǎn)量(萬(wàn)噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程.
(2)根據(jù)線性回歸方程預(yù)測(cè)2020年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計(jì)分別為,.(參考數(shù)據(jù):,計(jì)算結(jié)果保留到小數(shù)點(diǎn)后兩位)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市勞動(dòng)部門堅(jiān)持就業(yè)優(yōu)先,采取多項(xiàng)措施加快發(fā)展新興產(chǎn)業(yè),服務(wù)經(jīng)濟(jì),帶來(lái)大量就業(yè)崗位,據(jù)政府工作報(bào)告顯示,截至2018年末,全市城鎮(zhèn)新增就業(yè)21.9萬(wàn)人,創(chuàng)歷史新高.城鎮(zhèn)登記失業(yè)率為4.2%,比上年度下降0.73個(gè)百分點(diǎn),處于近20年來(lái)的最低水平.
(1)現(xiàn)從該城鎮(zhèn)適齡人群中抽取100人,得到如下列聯(lián)表:
失業(yè) | 就業(yè) | 合計(jì) | |
男 | 3 | 62 | 65 |
女 | 2 | 33 | 35 |
合計(jì) | 5 | 95 | 100 |
根據(jù)聯(lián)表判斷是否有99%的把握認(rèn)為失業(yè)與性別有關(guān)?
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
(2)調(diào)查顯示,新增就業(yè)人群中,新興業(yè)態(tài),民營(yíng)經(jīng)濟(jì),大型國(guó)企對(duì)就業(yè)支撐作用不斷增強(qiáng),其崗位比例為,現(xiàn)從全市新增就業(yè)人群(數(shù)目較大)中抽取4人,記抽到的新興業(yè)態(tài)的就業(yè)人數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù)在點(diǎn)處與軸相切
(1)求的值,并求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)在直線上且滿足.若,則弦中點(diǎn)的橫坐標(biāo)的取值范圍為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“互倒函數(shù)”的定義如下:對(duì)于定義域內(nèi)每一個(gè),都有成立,若現(xiàn)在已知函數(shù)是定義域在的“互倒函數(shù)”,且當(dāng)時(shí),成立.若函數(shù)()都恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),整理如下:
甲公司員工:410,390,330,360,320,400,330,340,370,350
乙公司員工:360,420,370,360,420,340,440,370,360,420
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件0.65元,乙公司規(guī)定每天350件以內(nèi)(含350件)的部分每件0.6元,超出350件的部分每件0.9元.
(1)根據(jù)題中數(shù)據(jù)寫出甲公司員工在這10天投遞的快件個(gè)數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為 (單位:元),求的分布列和數(shù)學(xué)期望;
(3)根據(jù)題中數(shù)據(jù)估算兩公司被抽取員工在該月所得的勞務(wù)費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com