【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).
(1)求的值;
(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)橢圓上的兩點(diǎn)、分別作該橢圓的兩條切線、,且與交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;
(3)在(2)的條件下,經(jīng)過(guò)點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問(wèn):點(diǎn)是否在直線上,請(qǐng)說(shuō)明理由.
【答案】(1)(2)(3)見(jiàn)解析
【解析】
(1)將直線y=x代入橢圓方程,得到x的方程,由直線和橢圓相切的條件:判別式為0,解方程可得a的值;(2)設(shè)切點(diǎn)A(x1,y1),B(x2,y2),可得切線,,,再將M代入上式,結(jié)合兩點(diǎn)確定一條直線,可得切點(diǎn)弦方程,AB的方程為x+my=1,將直線與橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理,求得△OAB的面積,化簡(jiǎn)整理,運(yùn)用基本不等式即可得到所求最大值;(3)點(diǎn)在直線上,因?yàn)?/span>
設(shè)、、,且,于是,向量坐標(biāo)化,得、、、,將代入橢圓方程,結(jié)合、在橢圓上,整理化簡(jiǎn)得,即在直線上.
(1)聯(lián)立,整理得
依題意,即
(2)設(shè)、,于是直線、的方程分別為、
將代入、的方程得且
所以直線的方程為
聯(lián)立
顯然,由,是該方程的兩個(gè)實(shí)根,有,
面積
即
當(dāng)且僅當(dāng)時(shí),“=”成立,取得最大值
(3)點(diǎn)在直線上,因?yàn)?/span>
設(shè)、、,且
于是,即、、、
又,
,
,即在直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)到定點(diǎn)的距離與到定直線的距離的比為,動(dòng)點(diǎn)的軌跡記為.
(1)求軌跡的方程;
(2)若點(diǎn)在軌跡上運(yùn)動(dòng),點(diǎn)在圓上運(yùn)動(dòng),且總有,
求的取值范圍;
(3)過(guò)點(diǎn)的動(dòng)直線交軌跡于兩點(diǎn),試問(wèn):在此坐標(biāo)平面上是否存在一個(gè)定點(diǎn),使得無(wú)論如何轉(zhuǎn)動(dòng),以為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo).若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公交公司為了方便市民出行,科學(xué)規(guī)劃車(chē)輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車(chē)輛發(fā)車(chē)間隔時(shí)間x與乘客等候人數(shù)y之間的關(guān)系,經(jīng)過(guò)調(diào)查得到如下數(shù)據(jù):
間隔時(shí)間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數(shù)y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調(diào)查小組先從這6組數(shù)據(jù)中選取4組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)y的差,若差值的絕對(duì)值都不超過(guò)1,則稱(chēng)所求方程是“恰當(dāng)回歸方程”.
(1)從這6組數(shù)據(jù)中隨機(jī)選取4組數(shù)據(jù),求剩下的2組數(shù)據(jù)的間隔時(shí)間相鄰的概率;
(2)若選取的是中間4組數(shù)據(jù),求y關(guān)于x的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”.
附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓: 的離心率為,短軸端點(diǎn)與兩焦點(diǎn)圍成的三角形面積為.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于兩點(diǎn),且過(guò)點(diǎn),為坐標(biāo)原點(diǎn),當(dāng)△為直角三角形,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是菱形,底面,分別是的中點(diǎn),,,.
(I)證明:;
(II)求直線與平面所成角的正弦值;
(III)在邊上是否存在點(diǎn),使與所成角的余弦值為,若存在,確定點(diǎn)位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,菱形中,,, 于.將沿翻折到,使,如圖2.
(Ⅰ)求證:平面平面;
(Ⅱ)求直線A′E與平面A′BC所成角的正弦值;
(Ⅲ)設(shè)為線段上一點(diǎn),若平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)營(yíng)銷(xiāo)人員進(jìn)行某商品的市場(chǎng)營(yíng)銷(xiāo)調(diào)查時(shí)發(fā)現(xiàn),每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷(xiāo)量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)試點(diǎn)統(tǒng)計(jì)得到以下表:
反饋點(diǎn)數(shù)t | 1 | 2 | 3 | 4 | 5 |
銷(xiāo)量(百件)/天 | 0.5 | 0.6 | 1 | 1.4 | 1.7 |
(Ⅰ)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當(dāng)?shù)卦撋唐蜂N(xiāo)量(千件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.試預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天的銷(xiāo)量;
(Ⅱ)若節(jié)日期間營(yíng)銷(xiāo)部對(duì)商品進(jìn)行新一輪調(diào)整.已知某地?cái)M購(gòu)買(mǎi)該商品的消費(fèi)群體十分龐大,經(jīng)營(yíng)銷(xiāo)調(diào)研機(jī)構(gòu)對(duì)其中的200名消費(fèi)者的返點(diǎn)數(shù)額的心理預(yù)期值進(jìn)行了一個(gè)抽樣調(diào)查,得到如下一份頻數(shù)表:
返還點(diǎn)數(shù)預(yù)期值區(qū)間 (百分比) | [1,3) | [3,5) | [5,7) | [7,9) | [9,11) | [11,13) |
頻數(shù) | 20 | 60 | 60 | 30 | 20 | 10 |
(1)求這200位擬購(gòu)買(mǎi)該商品的消費(fèi)者對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值的樣本平均數(shù)及中位數(shù)的估計(jì)值(同一區(qū)間的預(yù)期值可用該區(qū)間的中點(diǎn)值代替;估計(jì)值精確到0.1);
(2)將對(duì)返點(diǎn)點(diǎn)數(shù)的心理預(yù)期值在和的消費(fèi)者分別定義為“欲望緊縮型”消費(fèi)者和“欲望膨脹型”消費(fèi)者,現(xiàn)采用分層抽樣的方法從位于這兩個(gè)區(qū)間的30名消費(fèi)者中隨機(jī)抽取6名,再?gòu)倪@6人中隨機(jī)抽取3名進(jìn)行跟蹤調(diào)查,設(shè)抽出的3人中 “欲望緊縮型”消費(fèi)者的人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)狱c(diǎn)滿足,記M的軌跡為曲線C,直線l:()交曲線C于P,Q兩點(diǎn),點(diǎn)P在第一象限,軸,垂足為E,連接QE并延長(zhǎng)交曲線C于點(diǎn)G.
(1)求曲線C的方程,并說(shuō)明曲線C是什么曲線;
(2)若,求的面積.
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,且sinAsinBcosB+sin2BcosA=2 sinCcosB.
(1)求tanB的值;
(2)若△ABC的外接圓半徑為R,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com