【題目】在某藝術(shù)團(tuán)組織的“微視頻展示”活動中,該團(tuán)體將從微視頻的“點(diǎn)贊量”和“專家評分”兩個(gè)角度來進(jìn)行評優(yōu).若A視頻的“點(diǎn)贊量”和“專家評分”中至少有一項(xiàng)高于B視頻,則稱A視頻不亞于B視頻.已知共有5部微視頻展,如果某微視頻不亞于其他4部視頻,就稱此視頻為優(yōu)秀視頻.那么在這5部微視頻中,最多可能有_______個(gè)優(yōu)秀視頻.

【答案】5

【解析】

記這5部微視頻為,設(shè)這5部微視頻為先退到2部微視頻的情形,若的點(diǎn)贊量>的點(diǎn)贊量,且的專家評分>的專家評分,則優(yōu)秀視頻最多可能有2部,以此類推可知:這5部微視頻中,優(yōu)秀視頻最多可能有5部.

記這5部微視頻為,設(shè)這5部微視頻為先退到2部微視頻的情形,

的點(diǎn)贊量>的點(diǎn)贊量,

的專家評分>的專家評分,則優(yōu)秀視頻最多可能有2部;

再考慮3部的情形,若的點(diǎn)贊量>的點(diǎn)贊量>的點(diǎn)贊量,

的專家評分>的專家評分>的專家評分,則優(yōu)秀視頻最多可能有3部;

以此類推可知:這5部微視頻中,優(yōu)秀視頻最多可能有5部.

故答案為:5

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】祖暅?zhǔn)俏覈媳背瘯r(shí)代的偉大科學(xué)家,在數(shù)學(xué)上有突出貢獻(xiàn),他在實(shí)踐的基礎(chǔ)上提出了體積計(jì)算原理(祖暅原理):冪勢既同,則積不容異.教材中的探究與發(fā)現(xiàn)利用祖暅原理將半球的體積轉(zhuǎn)化為一個(gè)圓柱與一個(gè)圓錐的體積之差,從而得出球的體積計(jì)算公式.如圖(1)是一種四腳帳篷的示意圖,用任意平行于帳篷底面的平面截帳篷,得截面四邊形為正方形,該帳篷的三視圖如圖(2)所示,其中正視圖的投影線方向垂直于平面,正視圖和側(cè)視圖中的曲線均為半徑為1的半圓.模仿上述球的體積計(jì)算方法,得該帳篷的體積為( ).

圖(1 圖(2

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=2xlnx+1

1)求曲線yfx)在點(diǎn)(e,fe))處的切線方程;

2)若關(guān)于x的不等式fxx2+ax在(,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了檢驗(yàn)設(shè)備M與設(shè)備N的生產(chǎn)效率,研究人員作出統(tǒng)計(jì),得到如下表所示的結(jié)果,則

設(shè)備M

設(shè)備N

生產(chǎn)出的合格產(chǎn)品

48

43

生產(chǎn)出的不合格產(chǎn)品

2

7

附:

P(K2k0)

0.15

0.10

0.050

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

參考公式:,其中.

A. 有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

B. 沒有90%的把握認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

C. 可以在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

D. 不能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為生產(chǎn)的產(chǎn)品質(zhì)量與設(shè)備的選擇有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,且下列三個(gè)關(guān)系:,,中有且只有一個(gè)正確,則函數(shù)的值域是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實(shí)數(shù)x滿足x24ax+3a20a0),命題q:實(shí)數(shù)x滿足x25x+60

1)若a1,且pq為真命題,求實(shí)數(shù)x的取值范圍;

2)若pq的必要不充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCED中,BECD,平面ABED⊥平面BCE.在梯形ABED中,ABDE,BEABDE=BE=CE=2ABMBC的中點(diǎn),點(diǎn)N在線段DE上,且滿足DN=DE

1)求證:MN∥平面ACD;

2)若AB=2,求點(diǎn)N到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是兩條異面直線,直線都垂直,則下列說法正確的是( )

A. 平面,則

B. 平面,則,

C. 存在平面,使得,,

D. 存在平面,使得,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長為3的菱形中,已知,且.將梯形沿直線折起,使平面,如圖2,分別是上的點(diǎn).

(1)求證:圖2中,平面平面;

(2)若平面平面,求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案