【題目】甲、乙、丙、丁四個人到,,三個景點旅游,每個人只去一個景點,每個景點至少有一個人去,則甲不到景點的方案有( )
A.18種B.12種C.36種D.24種
【答案】D
【解析】
根據(jù)題意,分兩種情況討論,(1)甲單獨一個人旅游;(2)甲和乙、丙、丁中的1人一起旅游,分別求出每種情況的方案數(shù),利用分類計數(shù)原理,即可求解.
由題意,可分為兩種請況:
(1)甲單獨一個人旅游,在B、C景點中任選1個,由2種選法,
再將其他3人分成兩組,對應(yīng)剩下的2個景點,有種情況,
所以此時共有種方案;
(2)甲和乙、丙、丁中的1人一起旅游,
先在乙、丙、丁中任選1人,與甲一起在B、C景點中任選1個,有種情況,
將剩下的2人全排列,對應(yīng)剩下的2個景點,有種情況,
所以此時共有種方案,
綜上,可得甲不到景點的方案有種方案.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,拋物線上存在一點M,使得直線AM的斜率的最大值為1,圓Q的方程為.
(1)求點M的坐標和C的方程;
(2)若直線l交C于D,E兩點且直線MD,ME都與圓Q相切,證明直線l與圓Q相離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為(t為參數(shù)),以原點O為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)寫出曲線C的普通方程和極坐標方程;
(Ⅱ)M,N為曲線C.上兩點,若OM⊥ON,求|MN|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問谷雨日影長為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在區(qū)間上零點的個數(shù),并說明理由.
(2)當時,
①比較與的大小關(guān)系,并說明理由;
②證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有9位身高各異的同學(xué)拍照留念,分成前后兩排,前排4人,后排5人,要求每排同學(xué)的身高從中間到兩邊依次遞減,則不同的排隊方式有________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列滿足:,.
(Ⅰ)若;
(。┣笞C:;
(ⅱ)數(shù)列的前項和為且,求證:;
(Ⅱ)若對任意的,都有,寫出的取值范圍并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,△PAD為等邊三角形,AB=ADCD=2,∠BAD=∠ADC=90°,∠PDC=60°,E為BC的中點.
(1)證明:AD⊥PE.
(2)求直線PA與平面PDE所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com