【題目】在三棱錐中,.

1)求證:

2)若點(diǎn) 上一點(diǎn),且,求直線與平面所成的角的正弦值.

【答案】1)證明見(jiàn)解析;(2

【解析】

1)取的中點(diǎn)E,連接,然后由等腰三角形的性質(zhì)推出,從而利用線面垂直的判定定理與性質(zhì)可使問(wèn)題得證;

2)以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,然后求出相關(guān)點(diǎn)的坐標(biāo),再求出平面的一個(gè)法向量,從而利用空間向量的夾角公式求解即可.

解:

1)證明:取的中點(diǎn)E,連接

,∴,

同理可得,

,∴平面,

平面,∴.

2)∵,

為等腰直角三角形,且,

,∴,即

,且,∴平面,

∴以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸建立如圖所示的空間直角坐標(biāo)系.

,

設(shè),∵,,

,

,

,

設(shè)是平面的法向量,

,得,∴

設(shè)直線與平面所成角為

,

∴直線與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種治療新型冠狀病毒感染肺炎的復(fù)方中藥產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)越大表明質(zhì)量越好,為了提高產(chǎn)品質(zhì)量,我國(guó)醫(yī)療科研專家攻堅(jiān)克難,新研發(fā)出、兩種新配方,在兩種新配方生產(chǎn)的產(chǎn)品中隨機(jī)抽取數(shù)量相同的樣本,測(cè)量這些產(chǎn)品的質(zhì)量指標(biāo)值,規(guī)定指標(biāo)值小于時(shí)為廢品,指標(biāo)值在為一等品,大于為特等品.現(xiàn)把測(cè)量數(shù)據(jù)整理如下,其中配方廢品有件.

配方的頻數(shù)分布表

質(zhì)量指標(biāo)值分組

頻數(shù)

1)求的值;

2)試確定配方和配方哪一種好?(說(shuō)明:在統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】意大利數(shù)學(xué)家斐波那契的《算經(jīng)》中記載了一個(gè)有趣的問(wèn)題:已知一對(duì)兔子每個(gè)月可以生一對(duì)兔子,而一對(duì)兔子出生后在第二個(gè)月就開(kāi)始生小兔子.假如沒(méi)有發(fā)生死亡現(xiàn)象,那么兔子對(duì)數(shù)依次為:11,2,3,5,813,2134,5589,144……,這就是著名的斐波那契數(shù)列,它的遞推公式是,其中.若從該數(shù)列的前120項(xiàng)中隨機(jī)地抽取一個(gè)數(shù),則這個(gè)數(shù)是奇數(shù)的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCDHKLE中,底面ABCD是邊長(zhǎng)為3的正方形,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)F在線段AH上,且,BE與底面ABCD所成角為

1)求證:ACBE;

2)求二面角FBED的余弦值;

3)設(shè)點(diǎn)M在線段BD上,且AM//平面BEF,求DM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四個(gè)人到,三個(gè)景點(diǎn)旅游,每個(gè)人只去一個(gè)景點(diǎn),每個(gè)景點(diǎn)至少有一個(gè)人去,則甲不到景點(diǎn)的方案有(

A.18B.12C.36D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.

(1)求橢圓的方程;

(2)過(guò)原點(diǎn)且與軸不重合的直線交橢圓,兩點(diǎn),直線分別與軸交于點(diǎn),.求證:以為直徑的圓恒過(guò)交點(diǎn),,并求出面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過(guò)點(diǎn)的直線交拋物線兩點(diǎn).

1)當(dāng)時(shí),求直線的方程;

2)若過(guò)點(diǎn)且垂直于直線的直線與拋物線交于、兩點(diǎn),記的面積分別為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校在一天上午的5節(jié)課中,安排語(yǔ)文、數(shù)學(xué)、英語(yǔ)三門(mén)文化課和音樂(lè)、美術(shù)兩門(mén)藝術(shù)課各1節(jié),且相鄰兩節(jié)文化課之間最多安排1節(jié)藝術(shù)課,則不同的排課方法共有________種(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司對(duì)旗下的甲、乙兩個(gè)門(mén)店在19月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.

下面關(guān)于兩個(gè)門(mén)店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )

A.甲門(mén)店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元

B.根據(jù)甲門(mén)店的營(yíng)業(yè)額折線圖可知,該門(mén)店?duì)I業(yè)額的平均值在[20,25]內(nèi)

C.根據(jù)乙門(mén)店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)

D.乙門(mén)店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元

查看答案和解析>>

同步練習(xí)冊(cè)答案