【題目】設F1 , F2分別是C: (a>b>0)的左,右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.

(1)若直線MN的斜率為 ,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求a,b.

【答案】
(1)解:∵M是C上一點且MF2與x軸垂直,

∴M的橫坐標為c,當x=c時,y= ,即M(c, ),

若直線MN的斜率為 ,

即tan∠MF1F2= ,

即b2= =a2﹣c2

即c2+ ﹣a2=0,

,

即2e2+3e﹣2=0

解得e= 或e=﹣2(舍去),

即e=


(2)解:由題意,原點O是F1F2的中點,則直線MF1與y軸的交點D(0,2)是線段MF1的中點,

設M(c,y),(y>0),

,即 ,解得y= ,

∵OD是△MF1F2的中位線,

=4,即b2=4a,

由|MN|=5|F1N|,

則|MF1|=4|F1N|,

解得|DF1|=2|F1N|,

設N(x1,y1),由題意知y1<0,

則(﹣c,﹣2)=2(x1+c,y1).

,即

代入橢圓方程得

將b2=4a代入得 ,

解得a=7,b=


【解析】(1)根據(jù)條件求出M的坐標,利用直線MN的斜率為 ,建立關于a,c的方程即可求C的離心率;(2)根據(jù)直線MN在y軸上的截距為2,以及|MN|=5|F1N|,建立方程組關系,求出N的坐標,代入橢圓方程即可得到結論.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖是某算法的程序框圖,則程序運行后輸出的結果是(

A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx),gx)滿足關系gx)=fxfx),其中α是常數(shù).

(1)設fx)=cosx+sinx,求gx)的解析式;

(2)設計一個函數(shù)fx)及一個α的值,使得;

(3)當fx)=|sinx|+cosx,時,存在x1,x2R,對任意xR,gx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 =1(a>b>0)的左焦點為F,過點F的直線交橢圓于A,B兩點.|AF|的最大值是M,|BF|的最小值是m,滿足Mm= a2

(1)求該橢圓的離心率;
(2)設線段AB的中點為G,AB的垂直平分線與x軸和y軸分別交于D,E兩點,O是坐標原點.記△GFD的面積為S1 , △OED的面積為S2 , 求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣ex﹣2x.
(1)討論f(x)的單調性;
(2)設g(x)=f(2x)﹣4bf(x),當x>0時,g(x)>0,求b的最大值;
(3)已知1.4142< <1.4143,估計ln2的近似值(精確到0.001).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定下列四個命題:

若一個平面內的兩條直線與另一個平面都平行,那么這兩個平面相互平行;

若一個平面經過另一個平面的垂線,那么這兩個平面相互垂直;

垂直于同一直線的兩條直線相互平行;

若兩個平面垂直,那么一個平面內與它們的交線不垂直的直線與另一個平面也不垂直.

其中,為真命題的是  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱臺ABC﹣DEF中,已知平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3,

(1)求證:EF⊥平面ACFD;
(2)求二面角B﹣AD﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代有計算多項式值的秦九韶算法,如圖是實現(xiàn)該算法的程序框圖.執(zhí)行該程序框圖,若輸入的x=2,n=2,依次輸入的a為2,2,5,則輸出的s=( 。

A.7
B.12
C.17
D.34

查看答案和解析>>

同步練習冊答案