(文) 四棱錐S-ABCD的底面是矩形,錐頂點(diǎn)在底面的射影是矩形對(duì)角線的交點(diǎn),四棱錐及其三視圖如圖(AB平行于主視圖投影平面)則四棱錐S-ABCD的體積=( 。
A、24
B、18
C、
8
5
3
D、8
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知四棱錐的底面矩形的長(zhǎng)、寬分別為3、4,四棱錐的高為2,代入棱錐的體積公式計(jì)算可得答案.
解答:解:由三視圖知四棱錐的底面矩形的長(zhǎng)、寬分別為3、4,四棱錐的高為2,
∴四棱錐的體積V=
1
3
×3×4×2=8.
故選:D.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的體積,解答的關(guān)鍵是判斷幾何體的形狀及三視圖的數(shù)據(jù)所對(duì)應(yīng)的幾何量.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,SA=2
15
,AB=1,AC=2,∠BAC=60°,則球O的表面積為(  )
A、64πB、16π
C、12πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正四棱錐的每條棱長(zhǎng)均為2,則該四棱錐的側(cè)面積為(  )
A、4
2
B、4
2
+4
C、4
3
D、4
3
+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

體積為
32π
3
的球有一內(nèi)接四棱錐P-ABCD,該四棱錐底面為正方形,頂點(diǎn)P在底面上的射影恰好為球心,則四棱錐P-ABCD的體積為( 。
A、2
2
B、
16
3
C、
8
3
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1的表面或體內(nèi)任取一點(diǎn)M,若
AA1
AM
≥1,則動(dòng)點(diǎn)M所構(gòu)成的幾何體的體積為( 。
A、4B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某物體的運(yùn)動(dòng)方程為s=5-2t2,則改物體在時(shí)間[1,1+d]上的平均速度為( 。
A、2d+4B、-2d+4
C、2d-4D、-2d-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為1的正方體ABCD-A1B1C1D1被以A為球心,AB為半徑的球相截,則所截得幾何體(球內(nèi)部分)的體積為( 。
A、
1
6
π
B、
1
3
π
C、
π
2
D、
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱柱ABB1-DCC1中,BC⊥面ABB1,∠ABB1=90°,AB=4,BC=2,CC1=2,棱CD上有一動(dòng)點(diǎn)P,則△APC1周長(zhǎng)的最小值為( 。
A、4
2
+2
6
B、4
5
+2
6
C、3
2
+2
6
D、2
2
+4
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)在[0,+∞)上是增函數(shù),g(x)=f(|x|),若g(lgx)>g(1),則x的取值范圍是( 。
A、(0,10)
B、(10,+∞)
C、(
1
10
,10)
D、(0,
1
10
)∪(10,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案