正四棱錐的每條棱長(zhǎng)均為2,則該四棱錐的側(cè)面積為( 。
A、4
2
B、4
2
+4
C、4
3
D、4
3
+4
考點(diǎn):棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:根據(jù)題意,該四棱錐的底面是邊長(zhǎng)為2的正方形,四個(gè)側(cè)面都是邊長(zhǎng)為2的正三角形,由此結(jié)合正三角形面積計(jì)算公式,即可算出該四棱錐的側(cè)面積.
解答:解:作出正四棱錐S-ABCD,如圖所示,
∵正四棱錐各棱長(zhǎng)均為2,
∴正四棱錐的底面是邊長(zhǎng)為2的正方形,一個(gè)側(cè)面為邊長(zhǎng)為2的等邊三角形,
由此可得它的側(cè)面積為S側(cè)=4×(
1
2
×2×
3
2
×2)=4
3
,
故選:C.
點(diǎn)評(píng):本題給出所有棱長(zhǎng)均為2的正四棱錐,求它的側(cè)面積,著重考查了正四棱錐的性質(zhì)和正三角形面積計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,使得ex0≤0
B、sin2x+
2
sinx
≥3(x≠kπ,k∈Z)
C、?x∈R,2x>x2
D、a>1,b>1是ab>1的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A的坐標(biāo)(1,0),點(diǎn)B在直線y=-x上運(yùn)動(dòng),當(dāng)線段AB最短時(shí),點(diǎn)B的坐標(biāo)為( 。
A、(0,0)
B、(
1
2
,-
1
2
C、(
2
2
,-
2
2
D、(-
1
2
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)都是2的三棱錐的表面積為( 。
A、
3
B、2
3
C、3
3
D、4
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在曲線y=2x2-1的圖象上取一點(diǎn)(1,1)及鄰近一點(diǎn)(1+△x,1+△y),則
△y
△x
等于( 。
A、4△x+2△x2
B、4+2△x
C、4△x+△x2
D、4+△x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面為正方形的四棱柱的側(cè)棱垂直于底面,若此四棱柱的底面邊長(zhǎng)為1且各個(gè)頂點(diǎn)在一個(gè)直徑為2的球面上,那么該棱柱的表面積為(  )
A、1+4
2
B、2+4
2
C、8
D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“囷蓋”的術(shù):置如其周,令相乘也,又以高乘之,三十六成一,該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)L與高h(yuǎn),計(jì)算其體積V的近似公式V≈
1
36
L2h,它實(shí)際上是將圓錐體積公式中的圓周率π近似取為3,那么,近似公式V≈
2
75
L2h相當(dāng)于將圓錐體積公式中的π近似取為( 。
A、
22
7
B、
25
8
C、
157
50
D、
355
113

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文) 四棱錐S-ABCD的底面是矩形,錐頂點(diǎn)在底面的射影是矩形對(duì)角線的交點(diǎn),四棱錐及其三視圖如圖(AB平行于主視圖投影平面)則四棱錐S-ABCD的體積=( 。
A、24
B、18
C、
8
5
3
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在正四棱柱ABCD-A1B1C1D1中,AB=2,AA1=2
3
,點(diǎn)A、B、C、D在球O上,球O與BA1的另一個(gè)交點(diǎn)為E,與CD1的另一個(gè)交點(diǎn)為F,AE⊥BA1,則球O表面積為(  )
A、6πB、8π
C、12πD、16π

查看答案和解析>>

同步練習(xí)冊(cè)答案