【題目】偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,在某次考試成績統(tǒng)計中,某老師為了對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行分析,隨機(jī)挑選了8位同學(xué),得到他們的兩科成績偏差數(shù)據(jù)如下:

學(xué)生序號

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

-5

-10

-18

物理偏差

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

1)若之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

2)若該次考試該數(shù)平均分為120分,物理平均分為91.5分,試由(1)的結(jié)論預(yù)測數(shù)學(xué)成績?yōu)?/span>128分的同學(xué)的物理成績.

參考數(shù)據(jù):

【答案】1;(2

【解析】

試題(1)先根據(jù)表中的數(shù)據(jù),求出樣本中心,再求出回歸方程中的即可;(2)設(shè)該同學(xué)的物理成績?yōu)?/span>,則物理偏差為:,而數(shù)學(xué)偏差為,代入回歸方程解得即得該同學(xué)的物理成績.

試題解析:解:(1)由題意,,

,

所以

故線性回歸方程為,

2)由題意,設(shè)該同學(xué)的物理成績?yōu)?/span>,則物理偏差為:

而數(shù)學(xué)偏差為128-120=8,

,解得

所以,可以預(yù)測這位同學(xué)的物理成績?yōu)?/span>94分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),在以原點為極點,軸的非

負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)過點且與直線平行的直線,兩點,求點兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若方程fx)﹣m=0恰有兩個實根,則實數(shù)m的取值范圍是_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示自然數(shù)n的所有因數(shù)中最大的那個奇數(shù),例如:9的因數(shù)有1,3,9,,10的因數(shù)有1,2,5,10,,那么______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)討論函數(shù)f(x)的單調(diào)性;

(2)若f(x)≥﹣+ax+b恒成立,求a時,實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在底面是菱形的四棱錐中,,點EPD上,且

1)證明:平面ABCD

2)求二面角的大。

3)棱PC上是否存在一點F,使平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.

(1)證明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線(a>0,b>0)的左頂點與拋物線y2=2px(p>0)的焦點的距離為4,且雙曲線的一條漸近線與拋物線的準(zhǔn)線的交點坐標(biāo)為(-2,-1),則雙曲線的焦距為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,則方程恰有2個不同的實根,實數(shù)取值范圍__________________.

查看答案和解析>>

同步練習(xí)冊答案