如下圖所示,橢圓的左頂點(diǎn)為,是橢圓上異于點(diǎn)的任意一點(diǎn),點(diǎn)與點(diǎn)關(guān)于點(diǎn)對(duì)稱.
(1)若點(diǎn)的坐標(biāo)為,求的值;
(2)若橢圓上存在點(diǎn),使得,求的取值范圍.
(1);(2)
解析試題分析:(1)把點(diǎn)P坐標(biāo)代入橢圓C的方程解方程即可;(2)設(shè)然后利用點(diǎn)M在橢圓上和建立關(guān)于的方程,再消去得到m的關(guān)于的表達(dá)式,再利用基本不等式求范圍.
試題解析:(1)依題意,是線段的中點(diǎn),因?yàn)锳(-1,0),P,
所以點(diǎn)M的坐標(biāo)為 2分
由點(diǎn)M在橢圓上,所以,解得m= 6分
(2)解:設(shè)則,且
9分
因?yàn)椋琌P⊥OM,所以
11分
所以(或:導(dǎo)數(shù)法)
14分
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)基本不等式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)選修4-5:不等式選講
若,且.
(Ⅰ)求的最小值;
(Ⅱ)是否存在,使得?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的右準(zhǔn)線,離心率,,是橢圓上的兩動(dòng)點(diǎn),動(dòng)點(diǎn)滿足,(其中為常數(shù)).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)當(dāng)且直線與斜率均存在時(shí),求的最小值;
(3)若是線段的中點(diǎn),且,問(wèn)是否存在常數(shù)和平面內(nèi)兩定點(diǎn),,使得動(dòng)點(diǎn)滿足,若存在,求出的值和定點(diǎn),;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某工廠擬建一座平面圖為矩形,面積為的三段式污水處理池,池高為1,如果池的四周墻壁的建造費(fèi)單價(jià)為元,池中的每道隔墻厚度不計(jì),面積只計(jì)一面,隔墻的建造費(fèi)單價(jià)為元,池底的建造費(fèi)單價(jià)為元,則水池的長(zhǎng)、寬分別為多少米時(shí),污水池的造價(jià)最低?最低造價(jià)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com