【題目】矩形ABCD的面積為4,如果矩形的周長(zhǎng)不大于10,則稱此矩形是“美觀矩形”.

(1)當(dāng)矩形ABCD是“美觀矩形”時(shí),求矩形周長(zhǎng)的取值范圍;

(2)就矩形ABCD的一邊長(zhǎng)x的不同值,討論矩形是否是“美觀矩形”?

【答案】(1);(2)當(dāng)x∈[1,4]時(shí),矩形是“美觀矩形”,當(dāng)x∈(0,1)∪(4,+∞)時(shí),矩形不是“美觀矩形”.

【解析】

(1)根據(jù)基本不等式和定義即可得出周長(zhǎng)的范圍;

(2)令周長(zhǎng)不大于10,列不等式求出x的范圍,得出結(jié)論.

(1)設(shè)AB=x,則,故而矩形ABCD的周長(zhǎng)為,

當(dāng)且僅當(dāng)即x=2時(shí)取等號(hào).又矩形ABCD是“美觀矩形”,故而矩形的周長(zhǎng)不大于10.

∴當(dāng)矩形ABCD是“美觀矩形”時(shí),矩形周長(zhǎng)的取值范圍是[8,10].

(2)設(shè)矩形ABCD的周長(zhǎng)為f(x),則,

令f(x)≤10得,解得:1≤x≤4,

∴當(dāng)x∈[1,4]時(shí),矩形是“美觀矩形”,當(dāng)x∈(0,1)∪(4,+∞)時(shí),矩形不是“美觀矩形”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:y=x+m﹣2的圖象不經(jīng)過第二象限,命題q:方程x2+ =1表示焦點(diǎn)在x軸上的橢圓. (Ⅰ)試判斷p是q的什么條件;
(Ⅱ)若p∧q為假命題,p∨q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+bx2+ax+d的圖象過點(diǎn)P(0,2),且在點(diǎn)M(﹣1,f(﹣1))處的切線程為6x﹣y+7=0.

(1)求函數(shù)y=f(x)的解析式;

(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·龍泉驛區(qū)一中]交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮

上三個(gè)以及以上年度未發(fā)生有責(zé)任道路交通事故

下浮

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了70輛車齡已滿三年該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

13

7

20

14

6

(1)求一輛普通6座以下私家車在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購(gòu)進(jìn)一輛事故車虧損6000元,一輛非事故車盈利10000元,且各種投保類型車的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問題:

①若該銷售商店內(nèi)有7輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機(jī)挑選2輛,求這2輛車恰好有一輛為事故車的概率;

②若該銷售商一次性購(gòu)進(jìn)70輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)的定義域?yàn)镈,若存在閉區(qū)間[a,b]D,使得函數(shù)f(x)滿足:①f(x)在[a,b]內(nèi)是單調(diào)函數(shù);②f(x)在[a,b]上的值域?yàn)閇2a,2b],則稱區(qū)間[a,b]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有( ) ①f(x)=x2(x≥0);
②f(x)=ex(x∈R);
③f(x)= (x≥0);
④f(x)=
A.①②③④
B.①②④
C.①③④
D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求證:數(shù)列{ }等差數(shù)列;
(2)數(shù)列bn=anan+1 , 求數(shù)列bn的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yAsin(ωx+φ)(A>0,ω>0,|φ|<π)的一段圖象如圖所示

(1)求此函數(shù)的解析式;

(2)求此函數(shù)在(﹣2π,2π)上的遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次項(xiàng)系數(shù)是1的二次函數(shù)

當(dāng)時(shí),求方程的實(shí)根;

設(shè)bc都是整數(shù),若有四個(gè)不同的實(shí)數(shù)根,并且在數(shù)軸上四個(gè)根等距排列,試求二次函數(shù)的解析式,使得其所有項(xiàng)的系數(shù)和最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4一1:幾何證明選講 如圖,C是以AB為直徑的半圓O上的一點(diǎn),過C的直線交直線AB于E,交過A點(diǎn)的切線于D,BC∥OD.
(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

同步練習(xí)冊(cè)答案