【題目】在數(shù)列{an}中,a1=1,3anan1+an﹣an1=0(n≥2).
(1)求證:數(shù)列{ }等差數(shù)列;
(2)數(shù)列bn=anan+1 , 求數(shù)列bn的前n項(xiàng)和.

【答案】
(1)解:因?yàn)?anan1+an﹣an1=0(n≥2),

整數(shù),得 =3(n≥2),

所以數(shù)列{ }是以1為首項(xiàng),3為公差的等差數(shù)列


(2)解:由(1)可得 =1+3(n﹣1)=3n﹣2,

所以an= .

=


【解析】(1)利用3anan1+an﹣an1=0(n≥2),轉(zhuǎn)化為: =3(n≥2)即可證明數(shù)列{ }是等差數(shù)列.(2)求出an , 推出bn , 利用裂項(xiàng)法求解數(shù)列的和即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)=log2(3-x).

(1)若gx)=f(2+x)+f(2-x),判斷gx)的奇偶性;

(2)記hx)是y=f(3-x)的反函數(shù),設(shè)A、BC是函數(shù)hx)圖象上三個(gè)不同的點(diǎn),它們的縱坐標(biāo)依次是m、m+2、m+4且m≥1;試求△ABC面積的取值范圍,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A市某機(jī)構(gòu)為了調(diào)查該市市民對(duì)我國(guó)申辦2034年足球世界杯的態(tài)度,隨機(jī)選取了140位市民進(jìn)行調(diào)查,調(diào)查結(jié)果統(tǒng)計(jì)如下:

支持

不支持

總計(jì)

男性市民

60

女性市民

50

合計(jì)

70

140

(I)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(II)利用(1)完成的表格數(shù)據(jù)回答下列問題:

(。能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為性別與支持申辦足球世界杯有關(guān);

(ⅱ)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有5位退休老人,其中2位是教師,現(xiàn)從這5位退休老人中隨機(jī)抽取3人,求至多有1位老師的概率。

附:,其中

0.050

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)=x3ax2bx+1的導(dǎo)數(shù)滿足,,其中常數(shù)a,bR.

(1)求曲線yfx)在點(diǎn)(1,f(1))處的切線方程;

(2)設(shè),求函數(shù)gx)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的面積為4,如果矩形的周長(zhǎng)不大于10,則稱此矩形是“美觀矩形”.

(1)當(dāng)矩形ABCD是“美觀矩形”時(shí),求矩形周長(zhǎng)的取值范圍;

(2)就矩形ABCD的一邊長(zhǎng)x的不同值,討論矩形是否是“美觀矩形”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)函數(shù)f(x),如果對(duì)任意一個(gè)三角形,只要它的三邊長(zhǎng)a,b,c都在f(x)的定義域內(nèi),就有f(a),f(b),f(c)也是某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“三角保型函數(shù)”,給出下列函數(shù): ①f(x)= ;②f(x)=x2;③f(x)=2x;④f(x)=lgx,
其中是“三角保型函數(shù)”的是(
A.①②
B.①③
C.②③④
D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為定義在上的奇函數(shù),且當(dāng)時(shí),

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求函數(shù)在區(qū)間 上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為偶函數(shù),當(dāng)時(shí),,則的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)y=f(x)在區(qū)間(﹣∞,﹣1]上是增函數(shù),則下列不等式成立的是(
A.f(﹣1)>f(
B.f( )>f(﹣ )??
C.f(4)>f(3)
D.f(﹣ )>f(

查看答案和解析>>

同步練習(xí)冊(cè)答案