【題目】給出兩塊面積相同的正三角形紙片如圖,要求用其中一塊剪拼成一個(gè)正三棱錐(正三棱錐的三個(gè)側(cè)面是全等的等腰三角形)模型,另一塊剪拼成一個(gè)正三棱柱(正三棱柱上、下底面是正三角形,側(cè)面是矩形)模型,使紙片正好用完,請(qǐng)?jiān)O(shè)計(jì)一種剪拼方法,分別標(biāo)示在圖(1)(2)中,并作簡(jiǎn)要說明.

【答案】詳見解析

【解析】

從正三棱錐和正三棱柱的主要特征入手進(jìn)行設(shè)計(jì),比如底面是正三角形等.

如圖(1),沿正三角形三邊中點(diǎn)連線折起,可拼得一個(gè)正三棱錐.

如圖(2),從正三角形三個(gè)角上分別剪去三個(gè)相同的四邊形,其較長(zhǎng)的一組鄰邊邊長(zhǎng)為原三角形邊長(zhǎng)的,有一組對(duì)角為直角,余下部分按虛線折起,可拼得一個(gè)缺上底的正三棱柱,而剪去的三個(gè)相同的四邊形恰好可拼成這個(gè)正三棱柱的上底.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲(chǔ)蓄存款y(千億元)

5

6

7

8

10

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:

時(shí)間代號(hào)t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)通過()中的方程,求出y關(guān)于x的回歸方程;

(Ⅲ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?

(附:對(duì)于線性回歸方程其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若從裝有個(gè)紅球和個(gè)黑球的口袋內(nèi)任取個(gè)球,則下列為互斥的兩個(gè)事件是( )

A.“至少有一個(gè)黑球”與“都是黑球”B.“一個(gè)紅球也沒有”與“都是黑球”

C.“至少有一個(gè)紅球”與“都是紅球”D.“恰有個(gè)黑球”與“恰有個(gè)黑球”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1設(shè)是函數(shù)的極值點(diǎn),求的值并討論的單調(diào)性;

2)當(dāng)時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是海岸線、上的兩個(gè)碼頭,為海中一小島,在水上旅游線上.測(cè)得,到海岸線、的距離分別為

(1)求水上旅游線的長(zhǎng);

(2)海中 ,且處的某試驗(yàn)產(chǎn)生的強(qiáng)水波圓,生成小時(shí)時(shí)的半徑為.若與此同時(shí),一艘游輪以小時(shí)的速度自碼頭開往碼頭,試研究強(qiáng)水波是否波及游輪的航行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,四點(diǎn),中恰有三點(diǎn)在橢圓上.

1)求橢圓的方程;

2)過點(diǎn)且斜率不為的直線交橢圓兩點(diǎn),在軸上是否存在定點(diǎn),使得直線的斜率與直線的斜率之積為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取100個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如下.

(1)已知抽取的100個(gè)使用A款訂餐軟件的商家中,甲商家的“平均送達(dá)時(shí)間”為18分鐘。現(xiàn)從使用A款訂餐軟件的商家中“平均送達(dá)時(shí)間”不超過20分鐘的商家中隨機(jī)抽取3個(gè)商家進(jìn)行市場(chǎng)調(diào)研,求甲商家被抽到的概率;

(2)試估計(jì)該市使用A款訂餐軟件的商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);

(3)如果以“平均送達(dá)時(shí)間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】首屆世界低碳經(jīng)濟(jì)大會(huì)近日召開,本屆大會(huì)的主題為節(jié)能減排,綠色生態(tài)”.某單位在國(guó)家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為噸,最多為噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似地表示為,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價(jià)值為.

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則需要國(guó)家至少補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某養(yǎng)雞場(chǎng)有2500只雞準(zhǔn)備對(duì)外出售從中隨機(jī)抽取了一部分雞,根據(jù)它們的質(zhì)量(單位:),繪制出如下的統(tǒng)計(jì)圖①和圖②請(qǐng)根據(jù)相關(guān)信息,解答下列問題:

(1)圖①中的值為___________;

(2)統(tǒng)計(jì)這組數(shù)據(jù)的平均數(shù)眾數(shù)和中位數(shù);

(3)根據(jù)樣本數(shù)據(jù),估計(jì)這2500只雞中,質(zhì)量為的約有多少只?

查看答案和解析>>

同步練習(xí)冊(cè)答案