【題目】已知橢圓與拋物線有共同的焦點,且兩曲線的公共點到的距離是它到直線 (點在此直線右側(cè))的距離的一半.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點,直線過點且與橢圓交于兩點,以為鄰邊作平行四邊形.是否存在直線,使點落在橢圓或拋物線上?若存在,求出點坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)不存在直線,使點落在拋物線上,存在直線,使點落在橢圓上,理由見解析.
【解析】
(1)由題意,則.設(shè)點是兩曲線在第二象限內(nèi)的交點,求出點的坐標(biāo),代入橢圓方程得關(guān)于的方程,求得的值,即求橢圓方程;
(2)當(dāng)直線的斜率存在且不為0時,設(shè)直線的方程為,與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,結(jié)合為平行四邊形,即,可得的坐標(biāo),分別代入橢圓與拋物線方程,得到關(guān)于的方程,均無解;當(dāng)直線斜率不存在時,易知存在點在橢圓上,即得答案.
(1)由題意知,因而,即,
又兩曲線在第二象限內(nèi)的交點到的距離是它到直線的距離的一半,
即,
得,則,
代入到橢圓方程,得.
由,
解得,
所求橢圓的方程為.
(2)當(dāng)直線的斜率存在且不為0時,設(shè)直線的方程為
由,
得,
設(shè),
則,
由于為平行四邊形,得,
故,又,
可得.
若點在橢圓上,則,代入得,無解.
若點在拋物線上,則,代入得,無解.
當(dāng)直線斜率不存在時,,此時存在點在橢圓上.
故不存在直線,使點落在拋物線上,存在直線,使點落在橢圓上.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,,求函數(shù)在處的切線方程;
(2)若,且是函數(shù)的一個極值點,確定的單調(diào)區(qū)間;
(3)若,且對任意,恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .若g(x)存在2個零點,則a的取值范圍是
A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機詢問200名性別不同的大學(xué)生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值,參照附表,得到的正確結(jié)論是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
B.有97.5%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求的普通方程和曲線C的直角坐標(biāo)方程;
(2)求曲線C上的點到距離的最大值及該點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的函數(shù),若滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界
(1)設(shè),判斷在上是否是有界函數(shù),若是,說明理由,并寫出所有上界的值的集合;若不是,也請說明理由.
(2)若函數(shù)在上是以為上界的有界函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年北京市百項疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時段公交車運行情況,調(diào)取某路公交車早高峰時段全程所用時間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為B組.
A組:128,100,151,125,120
B組:100,102,96,101,
己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機抽取一個數(shù)不小于100的概率是.
(1)求a的值;
(2)該路公交車全程所用時間不超過100分鐘,稱為“正點運行”從A,B兩組數(shù)據(jù)中各隨機抽取一個數(shù)據(jù),記兩次運行中正點運行的次數(shù)為X,求X的分布列及期望;
(3)試比較A,B兩組數(shù)據(jù)方差的大。ú灰笥嬎悖,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準(zhǔn)保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩年度未發(fā)生有責(zé)任道路交通事故 | 下浮 | |
上三年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責(zé)任交通死亡事故 | 上浮30% | |
某機構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責(zé)任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個位數(shù)字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】陽馬和鱉臑(bienao)是《九章算術(shù)·商功》里對兩種錐體的稱謂.如圖所示,取一個長方體,按下圖斜割一分為二,得兩個模一樣的三棱柱,稱為塹堵(如圖).再沿其中一個塹堵的一個頂點與相對的棱剖開,得四棱錐和三棱錐各一個,有一棱與底面垂直的四棱錐稱為陽馬(四棱錐)余下三棱錐稱為鱉臑(三棱錐)若將某長方體沿上述切割方法得到一個陽馬一個鱉臑,且該陽馬的正視圖和鱉臑的側(cè)視圖如圖所示,則可求出該陽馬和鱉臑的表面積之和為( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com