【題目】已知函數(shù) .若gx)存在2個(gè)零點(diǎn),則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

【答案】C

【解析】分析首先根據(jù)gx)存在2個(gè)零點(diǎn),得到方程有兩個(gè)解,將其轉(zhuǎn)化為有兩個(gè)解,即直線與曲線有兩個(gè)交點(diǎn),根據(jù)題中所給的函數(shù)解析式,畫出函數(shù)的圖像(將去掉),再畫出直線,并將其上下移動(dòng),從圖中可以發(fā)現(xiàn),當(dāng)時(shí),滿足與曲線有兩個(gè)交點(diǎn),從而求得結(jié)果.

詳解畫出函數(shù)的圖像,y軸右側(cè)的去掉,

再畫出直線之后上下移動(dòng),

可以發(fā)現(xiàn)當(dāng)直線過點(diǎn)A時(shí),直線與函數(shù)圖像有兩個(gè)交點(diǎn),

并且向下可以無限移動(dòng),都可以保證直線與函數(shù)的圖像有兩個(gè)交點(diǎn),

即方程有兩個(gè)解,

也就是函數(shù)有兩個(gè)零點(diǎn),

此時(shí)滿足,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A{x|x22x30}B{x|x22mxm240,xR,mR}

(1)AB[0,3],求實(shí)數(shù)m的值;

(2)ARB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga (其中a>0,且a≠1).

(1)求函數(shù)f(x)的定義域;

(2)判斷函數(shù)f(x)的奇偶性并給出證明;

(3)若x時(shí),函數(shù)f(x)的值域是[0,1],求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護(hù)環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨(dú)建污水處理廠,或者聯(lián)合建污 水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗(yàn)公式,建廠的費(fèi)用為f(m)=25m0.7(萬元),m表示污水流量,鋪設(shè)管道的費(fèi)用(包括管道費(fèi)) (萬元),x表示輸送污水管道的長度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運(yùn)輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請(qǐng)解答下列問題(結(jié)果精確到0.1)

(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨(dú)建廠,共需多少總費(fèi)用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設(shè)城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費(fèi)用y與x的函數(shù)關(guān)系 式,并求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 其中是常數(shù)且,若的最小值是,滿足條件的點(diǎn)是橢圓一弦的中點(diǎn),則此弦所在的直線方程為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x.

(Ⅰ)當(dāng)x∈[﹣1,1]時(shí),求函數(shù)y=[f(x)]2﹣2af(x)+3的最小值g(a);

(Ⅱ)在(Ⅰ)的條件下,是否存在實(shí)數(shù)m>n>3,使得g(x)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 +y2=1,A,B,C,D為橢圓上四個(gè)動(dòng)點(diǎn),且AC,BD相交于原點(diǎn)O,設(shè)A(x1 , y1),B(x2 , y2)滿足 =
(1)求證: + = ;
(2)kAB+kBC的值是否為定值,若是,請(qǐng)求出此定值,并求出四邊形ABCD面積的最大值,否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評(píng)估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐底面為等腰梯形,且底面與側(cè)面垂直, , 分別為線段的中點(diǎn), , .

1證明: 平面;

2與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案