【題目】通過隨機詢問200名性別不同的大學(xué)生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值,參照附表,得到的正確結(jié)論是( )
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
A.有97.5%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
B.有97.5%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中, 、分別為、的中點, , .
(1)求證:平面平面;
(2)若直線和平面所成角的正弦值等于,求二面角的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圖:的右頂點與拋物線:的焦點重合,橢圓的離心率為,過橢圓的右焦點且垂直于軸的直線截拋物線所得的弦長為.
(1)求橢圓和拋物線的方程;
(2)過點的直線與橢圓交于,兩點,點關(guān)于軸的對稱點為.當(dāng)直線繞點旋轉(zhuǎn)時,直線是否經(jīng)過一定點?請判斷并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.
已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項和,且, ,
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線有共同的焦點,且兩曲線的公共點到的距離是它到直線 (點在此直線右側(cè))的距離的一半.
(1)求橢圓的方程;
(2)設(shè)為坐標(biāo)原點,直線過點且與橢圓交于兩點,以為鄰邊作平行四邊形.是否存在直線,使點落在橢圓或拋物線上?若存在,求出點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知△ABC的面積為
(1)求sinBsinC;
(2)若6cosBcosC=1,a=3,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線相交于兩點,與軸相交于點.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com