【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,并解答.

已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項和,且, ,

1)求數(shù)列的通項公式;

2)設(shè),求數(shù)列的前項和.

【答案】1;(2

【解析】

方案一:(1)根據(jù)等差數(shù)列的通項公式及前n項和公式列方程組,求出,從而寫出數(shù)列的通項公式;

2)由第(1)題的結(jié)論,寫出數(shù)列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數(shù)列的前項和.

其余兩個方案與方案一的解法相近似.

解:方案一:

1)∵數(shù)列都是等差數(shù)列,且,

,解得

,

綜上

2)由(1)得:

方案二:

1)∵數(shù)列都是等差數(shù)列,且,

解得

.

綜上,

2)同方案一

方案三:

1)∵數(shù)列都是等差數(shù)列,且.

,解得,

,

.

綜上,

2)同方案一

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校進(jìn)行自主招生選拔,分筆試和面試兩個階段進(jìn)行,規(guī)定分?jǐn)?shù)不小于筆試成績中位數(shù)的具有面試資格.現(xiàn)有1000余名學(xué)生參加了筆試考試,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.

1)求獲得面試資格應(yīng)劃定的最低分?jǐn)?shù)線;

2)從筆試得分在區(qū)間的學(xué)生中,利用分層抽樣的方法隨機抽取7人,那么從得分在區(qū)間各抽取多少人?

3)從(2)抽取的7人中,選出4人參加學(xué)校座談交流,學(xué)校打算給這4人一定的物質(zhì)獎勵,若該生分?jǐn)?shù)在給予300元物質(zhì)獎勵,若該生分?jǐn)?shù)在給予500元物質(zhì)獎勵,用表示學(xué)校發(fā)的獎金數(shù)額,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖,從甲地到丙地要經(jīng)過兩個十字路口(十字路口與十字路口),從乙地到丙地也要經(jīng)過兩個十字路口(十字路口與十字路口),設(shè)各路口信號燈工作相互獨立,且在,,,路口遇到紅燈的概率分別為,.

(1)求一輛車從乙地到丙地至少遇到一個紅燈的概率;

(2)若小方駕駛一輛車從甲地出發(fā),小張駕駛一輛車從乙地出發(fā),他們相約在丙地見面,記表示這兩人見面之前車輛行駛路上遇到的紅燈的總個數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .若gx)存在2個零點,則a的取值范圍是

A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)既存在極大值,又存在極小值.

1)求實數(shù)的取值范圍;

2)當(dāng)時,,分別為的極大值點和極小值點.,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問200名性別不同的大學(xué)生是否愛好踢毽子運動,計算得到統(tǒng)計量的觀測值,參照附表,得到的正確結(jié)論是( )

0.10

0.05

0.025

2.706

3.841

5.024

A.97.5%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”

B.97.5%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”

C.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”

D.在犯錯誤的概率不超過5%的前提下,認(rèn)為“愛好該項運動與性別無關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的參數(shù)方程為t為參數(shù)).以坐標(biāo)原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求的普通方程和曲線C的直角坐標(biāo)方程;

2)求曲線C上的點到距離的最大值及該點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年北京市百項疏堵工程基本完成.有關(guān)部門為了解疏堵工程完成前后早高峰時段公交車運行情況,調(diào)取某路公交車早高峰時段全程所用時間(單位:分鐘)的數(shù)據(jù),從疏堵工程完成前的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為A組,從疏堵工程完成后的數(shù)據(jù)中隨機抽取5個數(shù)據(jù),記為B.

A組:128,100,151125,120

B組:100,10296,101

己知B組數(shù)據(jù)的中位數(shù)為100,且從中隨機抽取一個數(shù)不小于100的概率是.

1)求a的值;

2)該路公交車全程所用時間不超過100分鐘,稱為“正點運行”從AB兩組數(shù)據(jù)中各隨機抽取一個數(shù)據(jù),記兩次運行中正點運行的次數(shù)為X,求X的分布列及期望;

3)試比較AB兩組數(shù)據(jù)方差的大小(不要求計算),并說明其實際意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一、高二年級的全體學(xué)生都參加了體質(zhì)健康測試,測試成績滿分為分,規(guī)定測試成績在之間為體質(zhì)優(yōu)秀,在之間為體質(zhì)良好,在之間為體質(zhì)合格,在之間為體質(zhì)不合格”.現(xiàn)從這兩個年級中各隨機抽取名學(xué)生,測試成績?nèi)缦拢?/span>

學(xué)生編號

1

2

3

4

5

6

7

高一年級

60

85

80

65

90

91

75

高二年級

79

85

91

75

60

其中是正整數(shù).

1)若該校高一年級有學(xué)生,試估計高一年級體質(zhì)優(yōu)秀的學(xué)生人數(shù);

2)若從高一年級抽取的名學(xué)生中隨機抽取人,記為抽取的人中為體質(zhì)良好的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望;

3)設(shè)兩個年級被抽取學(xué)生的測試成績的平均數(shù)相等,當(dāng)高二年級被抽取學(xué)生的測試成績的方差最小時,寫出的值.(只需寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案