【題目】已知圓的圓心為,直線l過點且與x軸不重合,l交圓C,D兩點,過的平行線,交于點E.設(shè)點E的軌跡為.

1)求的方程;

2)直線相切于點M,與兩坐標軸的交點為AB,直線經(jīng)過點M且與垂直,的另一個交點為N,當取得最小值時,求的面積.

【答案】(1) (2)

【解析】

1)根據(jù)三角形相似得到,得到AE+DE4,再利用橢圓定義求解即可

2設(shè)的方程為,與橢圓聯(lián)立,由直線相切得,由x軸、y軸上的截距分別為,m,得表達式,結(jié)合基本不等式求得坐標及,進而得,則面積可求

1)因為,所以.

,所以,則,

所以,從而.

化為,

所以

從而E的軌跡為以,為焦點,長軸長為的橢圓(剔除左、右頂點).

所以的方程為.

2)易知的斜率存在,所以可設(shè)的方程為,

聯(lián)立消去y,得.

因為直線l相切,所以

.

x軸、y軸上的截距分別為m,

,

當且僅當,即時取等號.

所以當時,取得最小值,此時,

根據(jù)對稱性.不妨取,,此時,

,從而.

聯(lián)立消去y,得,

,解得

所以,故的面積為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點是圓上的一動點,點,點在線段上,且滿足.

(1)求點的軌跡的方程;

(2)設(shè)曲線軸的正半軸,軸的正半軸的交點分別為點,,斜率為的動直線交曲線、兩點,其中點在第一象限,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】由中央電視臺綜合頻道和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課.每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了兩個地區(qū)的100名觀眾,得到如下的列聯(lián)表,已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中非常滿意的觀眾的概率為0.4

非常滿意

滿意

合計

35

10

  

  

合計

  

  

  

1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應(yīng)抽取非常滿意、地區(qū)的人數(shù)各是多少.

2)完成上述表格,并根據(jù)表格判斷是否有的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系.

0.050

0.010

0.001

3.841

6.635

10.828

附:參考公式:.

3)若以抽樣調(diào)查的頻率為概率,從、兩個地區(qū)隨機抽取2人,設(shè)抽到的觀眾非常滿意的人數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)內(nèi)有兩個零點,則實數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù),若當時,有三個極值點(其中.

1)求實數(shù)的取值范圍;

2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】年年底,某城市地鐵交通建設(shè)項目已經(jīng)基本完成,為了解市民對該項目的滿意度,分別從不同地鐵站點隨機抽取若干市民對該項目進行評分(滿分),繪制如下頻率分布直方圖,并將分數(shù)從低到高分為四個等級:

滿意度評分

低于60

60分到79

80分到89

不低于90

滿意度等級

不滿意

基本滿意

滿意

非常滿意

已知滿意度等級為基本滿意的有人.

(1)求頻率分布于直方圖中的值,及評分等級不滿意的人數(shù);

(2)相關(guān)部門對項目進行驗收,驗收的硬性指標是:市民對該項目的滿意指數(shù)不低于,否則該項目需進行整改,根據(jù)你所學的統(tǒng)計知識,判斷該項目能否通過驗收,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點.

(1)設(shè)P是上的一點,且AP⊥BE,求∠CBP的大小;

(2)當AB=3,AD=2時,求二面角E-AG-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)fx)在(0,+∞)上是減函數(shù),其實數(shù)m的取值范圍;

2)若函數(shù)fx)在(0,+∞)上存在兩個極值點x1,x2,證明:lnx1+lnx22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】的內(nèi)角,所對邊分別為,.已知.

(1)

(2) 為銳角三角形,且,求面積的取值范圍。

查看答案和解析>>

同步練習冊答案