【題目】如圖所示,四棱錐B-AEDC中,平面AEDC⊥平面ABC,F(xiàn)BC的中點(diǎn),PBD的中點(diǎn),且AE//DC,ACD=BAC=90°,DC=AC=AB=2AE

(1)證明:EP⊥平面BCD;

(2)DC=2,求三棱錐E-BDF的體積.

【答案】(1)見解析(2)

【解析】試題分析:(1)先根據(jù)等腰三角形性質(zhì)得,再根據(jù)面面垂直性質(zhì)得平面.,即得,從而可由線面垂直判定定理得平面.最后根據(jù)平行四邊形性質(zhì)得即得結(jié)論,(2)因?yàn)?/span>平面,所以根據(jù)錐體體積公式求體積.

試題解析:((Ⅰ)由題意知為等腰直角三角形,

的中點(diǎn),所以.

又因?yàn)槠矫?/span>平面,且,

所以平面.

平面,所以.

所以平面.

連結(jié),

所以是平行四邊形,因此平面.

Ⅱ)因?yàn)?/span>平面,所以平面是三棱錐的高.

所以. 于是三棱錐的體積為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓)的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為原點(diǎn),為橢圓的離心率.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校研究性學(xué)習(xí)小組從汽車市場(chǎng)上隨機(jī)抽取輛純電動(dòng)汽車調(diào)查其續(xù)駛里程(單次充電后能行駛的最大里程),被調(diào)查汽車的續(xù)駛里程全部介于公里和公里之間,將統(tǒng)計(jì)結(jié)果分成,,,,繪制成如圖所示的頻率分布直方圖.

(1)求直方圖中的值

(2)求續(xù)駛里程在的車輛數(shù);

(3)若從續(xù)駛里程在的車輛中隨機(jī)抽取輛車,求其中恰有一輛車的續(xù)駛里程在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二年級(jí)800名學(xué)生參加了地理學(xué)科考試,現(xiàn)從中隨機(jī)選取了40名學(xué)生的成績(jī)作為樣本,已知這40名學(xué)生的成績(jī)?nèi)吭?/span>40分至100分之間,現(xiàn)將成績(jī)按如下方式分成6組:第一組;第二組;……;第六組,并據(jù)此繪制了如圖所示的頻率分布直方圖.

1)求每個(gè)學(xué)生的成績(jī)被抽中的概率;

2)估計(jì)這次考試地理成績(jī)的平均分和中位數(shù);

3)估計(jì)這次地理考試全年級(jí)80分以上的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域內(nèi)存在,使函數(shù)成立;

1)請(qǐng)給出一個(gè)的值,使函數(shù)

2)函數(shù)是否是集合M中的元素?若是,請(qǐng)求出所有組成的集合;若不是,請(qǐng)說明理由;

3)設(shè)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校設(shè)計(jì)了一個(gè)實(shí)驗(yàn)學(xué)科的實(shí)驗(yàn)考查方案:考生從6道備選題中一次性隨機(jī)抽取3題,按照題目要求獨(dú)立完成全部實(shí)驗(yàn)操作.規(guī)定:至少正確完成其中2題的便可提交通過.已知6道備選題中考生甲有4題能正確完成,2題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.

(1)分別寫出甲、乙兩考生正確完成題數(shù)的概率分布列,并計(jì)算均值;

(2)試從兩位考生正確完成題數(shù)的均值及至少正確完成2題的概率分析比較兩位考生的實(shí)驗(yàn)操作能力.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司想了解對(duì)某產(chǎn)品投入的宣傳費(fèi)用與該產(chǎn)品的營(yíng)業(yè)額的影響.右圖是以往公司對(duì)該產(chǎn)品的宣傳費(fèi)用 (單位:萬元)和產(chǎn)品營(yíng)業(yè)額 (單位:萬元)的統(tǒng)計(jì)折線圖.

(Ⅰ)根據(jù)折線圖可以判斷,可用線性回歸模型擬合宣傳費(fèi)用與產(chǎn)品營(yíng)業(yè)額的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;

(Ⅱ)建立產(chǎn)品營(yíng)業(yè)額關(guān)于宣傳費(fèi)用的回歸方程;

(Ⅲ)若某段時(shí)間內(nèi)產(chǎn)品利潤(rùn)與宣傳費(fèi)和營(yíng)業(yè)額的關(guān)系為應(yīng)投入宣傳費(fèi)多少萬元才能使利潤(rùn)最大,并求最大利潤(rùn). (計(jì)算結(jié)果保留兩位小數(shù))

參考數(shù)據(jù):,,,

參考公式:相關(guān)系數(shù),回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐,底面為矩形, 且側(cè)面平面,側(cè)面平面,為正三角形,

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某支教隊(duì)有8名老師,現(xiàn)欲從中隨機(jī)選出2名老師參加志愿活動(dòng),

(1)若規(guī)定選出的至少有一名女老師,則共有18種不同的需安排方案,試求該支教隊(duì)男、女老師的人數(shù);

(2)在(1)的條件下,記為選出的2位老師中女老師的人數(shù),寫出的分布列.

查看答案和解析>>

同步練習(xí)冊(cè)答案