設F1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點,l為左準線,A1、A2分別為其長軸的左、右端點.

(1)若橢圓上的點M(1,)到F1、F2的距離之和為4,求橢圓方程;

(2)有一個猜想:“設P(x1,y1)、Q(x2,y2)(y1y2≠0)是橢圓C上的任意兩點,若P、F1、Q三點共線,則直線PA1、QA2、l共點.”你認為這個猜想能成立嗎?請說明理由.

解:(1)由已知得,

2a=|MF1|+|MF2|=4,

∴a=2.又M在橢圓上,

+=1.

∴b=.

∴橢圓方程為+=1.

(2)由已知,A1(-a,0)、A2(a,0)、F1(-c,0),直線PA1的方程為y=(x+a),

    直線QA2的方程為y=(x-a).

    設直線PA1與l交于點P′(-,yP′);直線QA2與直線l交于Q′(-,yQ′).

yP′=(-+a),

yQ′=(--a).

    要證PA1、QA2、l共點,只需證yP′=yQ′.

∵P、F1、Q三點共線,

=.

∴c=.                                                                   ①

    由yP′=yQ(-+a)=(--a)=,

    將①代入得yP′=yQ.                                ②

    又∵點P、Q在橢圓C上,

    兩式相比得,

∴②恒成立.

∴恒有yP′=yQ′.

∴直線PA1、QA2、l恒共點.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設F1,F(xiàn)2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左,右焦點.
(1)當P∈C,且
PF1
PF
2
=0
,|PF1|•|PF2|=8時,求橢圓C的左,右焦點F1、F2
(2)F1、F2是(1)中的橢圓的左,右焦點,已知⊙F2的半徑是1,過動點Q的作⊙F2切線QM,使得|QF1|=
2
|QM|
(M是切點),如圖.求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,且橢圓上一點P(1,
3
2
)
到F1,F(xiàn)2兩點距離之和等于4.
(Ⅰ)求此橢圓方程;
(Ⅱ)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設F1、F2分別是橢圓C:
x2
6m2
+
y2
2m2
=1
(m>0)的左、右焦點.
(I)當p∈C,且
pF1
pF
2
=0
,|
pF1
|•|
pF
2
|=4
時,求橢圓C的左、右焦點F1、F2的坐標.
(II)F1、F2是(I)中的橢圓的左、右焦點,已知F2的半徑是1,過動點Q作的切線QM(M為切點),使得|QF1|=
2
|QM|
,求動點Q的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
x2
b2
=1(a>b>0)的焦點,若橢圓C上存在點P,使線段PF1的垂直平分線過點F2,則橢圓離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•肇慶二模)設F1,F(xiàn)2分別是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點.
(1)設橢圓C上的點(
2
2
3
2
)
到F1,F(xiàn)2兩點距離之和等于2
2
,寫出橢圓C的方程;
(2)設過(1)中所得橢圓上的焦點F2且斜率為1的直線與其相交于A,B,求△ABF1的面積;
(3)設點P是橢圓C 上的任意一點,過原點的直線l與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為kPN,kPN試探究kPN•kPN的值是否與點P及直線l有關,并證明你的結論.

查看答案和解析>>

同步練習冊答案