【題目】求傾斜角為直線y= +1的傾斜角的一半,且分別滿足下列條件的直線方程:(1)
【答案】解:∵直線l1:y= +1的斜率k1= ,
∴直線l1的傾斜角為120°,∴所求直線的傾斜角為60°,斜率k= .
∵過點(-4,1),∴直線方程為y-1= (x+4)
(1)經(jīng)過點(-4,1)
(2)在y軸上的截距為-10.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a為常數(shù)) (Ⅰ)當(dāng)a=4時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范圍;
(Ⅲ)若方程f(x)+a+1=0在x∈(1,2)上有且只有一個實根,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知g(x)是各項系數(shù)均為整數(shù)的多項式,f(x)=2x2﹣x+1,且滿足f(g(x))=2x4+4x3+13x2+11x+16,則g(x)的各項系數(shù)之和為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+ )的圖象,可以將f(x)的圖象( )
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在 上的奇函數(shù) 滿足: ,且在區(qū)間 上單調(diào)遞減,則不等式 的解集是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.“p∨q”是“p∧q”的充分不必要條件
B.樣本10,6,8,5,6的標準差是3.3
C.K2是用來判斷兩個分類變量是否相關(guān)的隨機變量,當(dāng)K2的值很小時可以推定兩類變量不相關(guān)
D.設(shè)有一個回歸直線方程為 =2﹣1.5x,則變量x每增加一個單位, 平均減少1.5個單位.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一邊長為6的正方形鐵片,在鐵片的四角各截去一個邊長為x的小正方形后,沿圖中虛線部分折起,做成一個無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱柱ABC-A′B′C′,底面是邊長為1的正三角形,側(cè)面為全等的矩形且高為8,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行一周后到達A′點的最短路線長.
本題條件不變,求一點自A點出發(fā)沿著三棱柱的側(cè)面繞行兩周后到達A′點的最短路線長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com