【題目】已知三棱錐P﹣ABC的各頂點都在同一球的面上,且PA⊥平面ABC,若球O的體積為 (球的體積公式為 R3 , 其中R為球的半徑),AB=2,AC=1,∠BAC=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示,在△ABC中,AB=2,AC=1,∠BAC=60°,則BC2=22+12﹣2×1×2×cos60°=3, 解得BC= ,∴
∴∠ACB=90°.
取AB的中點D,則球心O滿足OD⊥平面ABC.
又PA⊥平面ABC,∴三棱錐P﹣ABC的外接球的球心O為PB的中點.
∴OD= PA.
由球的體積計算公式可得: R3= ,解得R=
∴OD= =2.
∴PA=4
∴三棱錐P﹣ABC的體積V= PA= =
故選:B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,x∈R,ω>0.
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)y=f(x)的圖象與直線y=﹣1的兩個相鄰交點間的距離為 ,求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f'(x),其中f'(x)為函數(shù)f(x)的導函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (a>0). (Ⅰ)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若 恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0 , 使得當x∈(x0 , +∞),恒有f(x)<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為非零實數(shù),且對于任意的正整數(shù)n,都有(a1+a2+a3+…+an2=a13+a23+a33+…+an3
(1)寫出數(shù)列{an}的前三項a1 , a2 , a3(請寫出所有可能的結(jié)果);
(2)是否存在滿足條件的無窮數(shù)列{an},使得a2017=﹣2016?若存在,求出這樣的無窮數(shù)列的一個通項公式;若不存在,說明理由;
(3)記an點所有取值構(gòu)成的集合為An , 求集合An中所有元素之和(結(jié)論不要證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是∠DAB=60°且邊長為a的菱形,側(cè)面PAD為正三角形,其所在平面垂直于底面ABCD,若G為AD邊的中點,
(1)求證:BG⊥平面PAD;
(2)求證:AD⊥PB;
(3)若E為BC邊的中點,能否在棱PC上找到一點F,使平面DEF⊥平面ABCD,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的兩個零點 滿足 ,集合 ,則( )
A.mA , 都有f(m+3)>0
B.mA , 都有f(m+3)<0
C.m0A , 使得f(m0+3)=0
D.m0A , 使得f(m0+3)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標方程;
(Ⅱ)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C',若點P(1,0),直線l與C'交與A,B,求|PA||PB|,|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(cos ,﹣1) =( ),設(shè)函數(shù)f(x)= +1.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)=a在區(qū)間[0,π]上有實數(shù)解,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案