在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.

(1)求圓O和直線l的直角坐標(biāo)方程.

(2)當(dāng)θ∈(0,π),求直線l與圓O公共點的一個極坐標(biāo).

 

(1) x2+y2-x-y=0 x-y+1=0 (2) (1,)

【解析】(1)O:ρ=cosθ+sinθ,即ρ2=ρcosθ+ρsinθ,

O的直角坐標(biāo)方程為x2+y2=x+y,x2+y2-x-y=0.

直線l:ρsin(θ-)=,即ρsinθ-ρcosθ=1,

則直線l的直角坐標(biāo)方程為y-x=1,x-y+1=0.

(2)

∵θ∈(0,π),∴ρ==1,θ=.

故直線l與圓O公共點的一個極坐標(biāo)為(1,).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題

2×2矩陣M對應(yīng)的變換將點(1,-1)(-2,1)分別變換成點(-1,-1)(0,-2).

(1)求矩陣M.

(2)設(shè)直線l在矩陣M對應(yīng)的變換作用下得到了直線m:x-y=4.求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:填空題

若隨機變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.E(ξ)=2,D(ξ)的最小值等于   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如下的2×2列聯(lián)表:

 

總計

走天橋

40

20

60

走斑馬線

20

30

50

總計

60

50

110

由χ2=算得,

χ2=7.8.

以下結(jié)論正確的是(  )

(A)99%以上的把握認(rèn)為“選擇過馬路的方式與性別有關(guān)”

(B)99%以上的把握認(rèn)為“選擇過馬路的方式與性別無關(guān)”

(C)在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別有關(guān)”

(D)在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“選擇過馬路的方式與性別無關(guān)”

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十三第十章第十節(jié)練習(xí)卷(解析版) 題型:選擇題

關(guān)于線性回歸,以下說法錯誤的是(  )

(A)自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系

(B)在平面直角坐標(biāo)系中用描點的方法得到的表示具有相關(guān)關(guān)系的兩個變量的一組數(shù)據(jù)的圖形叫做散點圖

(C)線性回歸直線方程最能代表觀測值x,y之間的關(guān)系,且其回歸直線一定過樣本中心點(,)

(D)甲、乙、丙、丁四位同學(xué)各自對A,B兩變量的線性相關(guān)性作試驗,并由回歸分析法分別求得相關(guān)系數(shù)rxy如下表

 

rxy

0.82

0.78

0.69

0.85

則甲同學(xué)的試驗結(jié)果體現(xiàn)A,B兩變量更強的線性相關(guān)性

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

求過點A(3,)且和極軸成角的直線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:填空題

隨機變量η的分布列如下:

η

1

2

3

4

5

6

P

0.2

x

0.35

0.1

0.15

0.2

則①x=     ;P(η>3)=     ;

P(1<η≤4)=     .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高中數(shù)學(xué)全國各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

已知函數(shù)處的切線方程為.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程恰有兩個不同的實根,求實數(shù)的值;

(3)數(shù)列滿足,求的整數(shù)部分.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年廣東省廣州市畢業(yè)班綜合測試一理科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,是圓的切線,切點為點,直線與圓交于、兩點,的角平分線交弦、兩點,已知,,則的值為 .

 

 

查看答案和解析>>

同步練習(xí)冊答案