【題目】 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

 

第31屆里約

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

中國

26

38

51

32

28

俄羅斯

19

24

24

27

32

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結論即可);

(2)下表是近五屆奧運會中國代表團獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時間 (時間代號)變化的數(shù)據(jù):

27

28

29

30

31

時間代號(x)

1

2

3

4

5

金牌數(shù)之和(y枚)

28

60

111

149

175

作出散點圖如下:

①由圖中可以看出,金牌數(shù)之和 與時間代號 之間存在線性相關關系,請求出 關于 的線性回歸方程;

②利用①中的回歸方程,預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數(shù).

參考數(shù)據(jù):,

附:對于一組數(shù)據(jù) ,,其回歸直線的斜率的最小二乘估計為

【答案】(1)詳見解析;(2)①.

【解析】

(1)根據(jù)題意,畫出莖葉圖,通過莖葉圖得出概率結論;

(2)①計算線性回歸方程的系數(shù)、,寫出線性回歸方程,

利用回歸方程計算x=6的值再減去175即可.

解:(1)兩國代表團獲得的金牌數(shù)的莖葉圖如下,

通過莖葉圖可以看出,中國代表團獲得的金牌數(shù)的平均值高于俄羅斯代表團獲得的金牌數(shù)的平均值;俄羅斯代表團獲得的金牌數(shù)比較集中,中國代表團獲得的金牌數(shù)比較分散;

(2)①計算===38.3,

所以==104.6﹣38.3×3=﹣10.3;

所以金牌數(shù)之和y關于時間x的線性回歸方程為=38.3x﹣10.3

知,當x=6時,中國代表團獲得的金牌數(shù)之和的預報值=38.3×6﹣10.3=219.5,故預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數(shù)219.5﹣175=44.545枚.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點D在邊BC的延長線上,且BC=2CD,AD=

(1)求CD的長;
(2)求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC內角A,B,C的對邊分別是a,b,c,且滿足a( sinC+cosC)=b+c.
(I) 求角A的大小;
(Ⅱ)已知函數(shù)f(x)=sin(ωx+A)的最小正周期為π,求f(x)的減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx﹣ax2+
(I) 當a= 時,判斷f(x)在其定義上的單調性;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 其中x1<x2 . 求證:
(i)f(x2)>0;
(ii)x1+x2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點為P53).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化肥廠生產甲、乙兩種混合肥料,需要A,B,C三種主要原料.生產1車皮甲種肥料和生產1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎上生產甲、乙兩種肥料.已知生產1車皮甲種肥料,產生的利潤為2萬元;生產1車皮乙種肥料,產生的利潤為3萬元.分別用x,y表示計劃生產甲、乙兩種肥料的車皮數(shù).

(1)用x,y列出滿足生產條件的數(shù)學關系式,并畫出相應的平面區(qū)域;

(2)問分別生產甲、乙兩種肥料各多少車皮,能夠產生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】f(x)是定義在(0,+∞)上單調函數(shù),且對x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實數(shù)解所在的區(qū)間是(
A.(0,
B.( ,1)
C.(1,e)
D.(e,3)

查看答案和解析>>

同步練習冊答案