【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

【答案】(0,
【解析】解:∵函數(shù)f(x)=x2+ax+b在(0,1)上有兩個零點,
,
由題意作平面區(qū)域如下,
,
∵f(0)=b,f(1)=1+a+b,
∴min{f(0),f(1)}=
結合圖象可知,D(﹣1, ),
當﹣1≤a<0時,0<b< ,
當﹣2<a<﹣1時,0<1+a+b< ,
綜上所述,min{f(0),f(1)}的取值范圍是(0, );
所以答案是:(0, ).
【考點精析】關于本題考查的函數(shù)的最值及其幾何意義,需要了解利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調性的判斷函數(shù)的最大(。┲挡拍艿贸稣_答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校舉辦校園科技文化藝術節(jié),在同一時間安排《生活趣味數(shù)學》和《校園舞蹈賞析》兩場講座.已知兩學習小組各有位同學,每位同學在兩場講座任意選聽一場.若人選聽《生活趣味數(shù)學》,其余人選聽《校園舞蹈賞析》;人選聽《生活趣味數(shù)學》,其余人選聽《校園舞蹈賞析》.

(1)若從此人中任意選出人,求選出的人中恰有人選聽《校園舞蹈賞析》的概率;

(2)若從兩組中各任選人,設為選出的人中選聽《生活趣味數(shù)學》的人數(shù),求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= (a>0,且a≠1)的值域為(﹣∞,+∞),則實數(shù)a的取值范圍是(
A.(3,+∞)
B.(0, ]
C.(1,3)
D.[ ,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高三一班舉辦消防安全知識競賽,分別選出3名男生和3名女生組成男隊和女隊,每人一道必答題,答對則為本隊得10分,答錯與不答都得0分,已知男隊每人答對的概率依次為 , ,女隊每人答對的概率都是 ,設每人回答正確與否相互之間沒有影響,用X表示男隊的總得分.
(I) 求X的分布列及其數(shù)學期望E(X);
(Ⅱ)求在男隊和女隊得分之和為50的條件下,男隊比女隊得分高的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線被圓所截得的弦的中點為P53).(1)求直線的方程;(2)若直線與圓相交于兩個不同的點,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 屆夏季奧林匹克運動會將于2016年8月5日 21日在巴西里約熱內盧舉行.下表是近五屆奧運會中國代表團和俄羅斯代表團獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù)(單位:枚).

 

第31屆里約

第30屆倫敦

第29屆北京

第28屆雅典

第27屆悉尼

中國

26

38

51

32

28

俄羅斯

19

24

24

27

32

(1)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運會兩國代表團獲得的金牌數(shù)的莖葉圖,并通過莖葉圖比較兩國代表團獲得的金牌數(shù)的平均值及分散程度(不要求計算出具體數(shù)值,給出結論即可);

(2)下表是近五屆奧運會中國代表團獲得的金牌數(shù)之和 (從第 屆算起,不包括之前已獲得的金牌數(shù))隨時間 (時間代號)變化的數(shù)據(jù):

27

28

29

30

31

時間代號(x)

1

2

3

4

5

金牌數(shù)之和(y枚)

28

60

111

149

175

作出散點圖如下:

①由圖中可以看出,金牌數(shù)之和 與時間代號 之間存在線性相關關系,請求出 關于 的線性回歸方程;

②利用①中的回歸方程,預測2020年第32屆奧林匹克運動會中國代表團獲得的金牌數(shù).

參考數(shù)據(jù):,,

附:對于一組數(shù)據(jù) ,,,,其回歸直線的斜率的最小二乘估計為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖的算法思路源于我國古代數(shù)學中的秦九韶算法,執(zhí)行該程序框圖,則輸出的結果S表示的值為(

A.a0+a1+a2+a3
B.(a0+a1+a2+a3)x3
C.a0+a1x+a2x2+a3x3
D.a0x3+a1x2+a2x+a3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為,則其長軸長為__________;若的右焦點, 的上頂點, 上位于第一象限內的動點,則四邊形的面積的最大值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐,側棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案