【題目】已知橢圓的方程為,則其長軸長為__________;若的右焦點, 的上頂點, 上位于第一象限內(nèi)的動點,則四邊形的面積的最大值為__________

【答案】

【解析】由題意易得:長軸長為;

四邊形OBPF的面積為三角形OBF與三角形BFP的面積和,

三角形OBF的面積為定值,要使三角形BFP的面積最大,則P到直線BF的距離最大,

設(shè)與直線BF平行的直線方程為y=﹣x+m,

聯(lián)立,可得3x24mx+2m22=0

=16m24×3×2m22)=0,解得m=

P為C上位于第一象限的動點,

取m=,此時直線方程為y=﹣x+

則兩平行線x+y=1x+y的距離為d=.

三角形BFP的面積最大值為S=

四邊形OAPF(其中O為坐標原點)的面積的最大值是=

故答案為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)h(x)=x2+ax+b在(0,1)上有兩個不同的零點,記min{m,n}= ,則min{h(0),h(1)}的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某化肥廠生產(chǎn)甲、乙兩種混合肥料,需要A,BC三種主要原料.生產(chǎn)1車皮甲種肥料和生產(chǎn)1車皮乙種肥料所需三種原料的噸數(shù)如下表所示:

現(xiàn)有A種原料200噸,B種原料360噸,C種原料300噸.在此基礎(chǔ)上生產(chǎn)甲、乙兩種肥料.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為2萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為3萬元.分別用xy表示計劃生產(chǎn)甲、乙兩種肥料的車皮數(shù).

(1)用xy列出滿足生產(chǎn)條件的數(shù)學關(guān)系式,并畫出相應(yīng)的平面區(qū)域;

(2)問分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?并求出此最大利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校在高二年級實行選課走班教學,學校為學生提供了多種課程,其中數(shù)學科提供5種不同層次的課程,分別稱為數(shù)學1、數(shù)學2、數(shù)學3、數(shù)學4、數(shù)學5,每個學生只能從這5種數(shù)學課程中選擇一種學習,該校高二年級1800名學生的數(shù)學選課人數(shù)統(tǒng)計如表:

課程

數(shù)學1

數(shù)學2

數(shù)學3

數(shù)學4

數(shù)學5

合計

選課人數(shù)

180

540

540

360

180

1800

為了了解數(shù)學成績與學生選課情況之間的關(guān)系,用分層抽樣的方法從這1800名學生中抽取了10人進行分析.
(1)從選出的10名學生中隨機抽取3人,求這3人中至少有2人選擇數(shù)學2的概率;
(2)從選出的10名學生中隨機抽取3人,記這3人中選擇數(shù)學2的人數(shù)為X,選擇數(shù)學1的人數(shù)為Y,設(shè)隨機變量ξ=X﹣Y,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】本題滿分15如圖,在四棱錐,平面PAD平面ABCD, ,E是BD的中點

求證:EC//平面APD;

求BP與平面ABCD所成角的正切值;

求二面角正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為。斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為

1)求橢圓的方程;

2)求的面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,且a≠1,函數(shù) ,設(shè)函數(shù)f(x)的最大值為M,最小值為N,則(
A.M+N=8
B.M+N=10
C.M﹣N=8
D.M﹣N=10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:

氣溫

0

4

12

19

27

熱奶茶銷售杯數(shù)

150

132

130

104

94

(Ⅰ)求熱奶茶銷售杯數(shù)關(guān)于氣溫的線性回歸方程精確到0.1),若某天的氣溫為,預(yù)測這天熱奶茶的銷售杯數(shù);

(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.

參考數(shù)據(jù):,.

參考公式:

查看答案和解析>>

同步練習冊答案