【題目】如圖,某沿海地區(qū)計(jì)劃鋪設(shè)一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個(gè)燈塔處,在A地用測(cè)角器測(cè)得,在A地正西方向4km的點(diǎn)C處,用測(cè)角器測(cè)得.擬定鋪設(shè)方案如下:在岸MN上選一點(diǎn)P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè).預(yù)算地下、水下的電纜鋪設(shè)費(fèi)用分別為2萬(wàn)元/km和4萬(wàn)元/km,設(shè),,鋪設(shè)電纜的總費(fèi)用為萬(wàn)元.
(1)求函數(shù)的解析式;
(2)試問(wèn)點(diǎn)P選在何處時(shí),鋪設(shè)的總費(fèi)用最少,并說(shuō)明理由.
【答案】(1),其中(2)當(dāng)點(diǎn)P選在距離A地處時(shí),鋪設(shè)的總費(fèi)用最少,詳見(jiàn)解析.
【解析】
(1)過(guò)B作MN的垂線,垂足為D,根據(jù)題中條件,得到,,由,得到,,,進(jìn)而得到,化簡(jiǎn)即可得出結(jié)果;
(2)根據(jù)(1)的結(jié)果,先設(shè),,對(duì)求導(dǎo),用導(dǎo)數(shù)的方法研究其單調(diào)性,即可求出最值.
(1)過(guò)B作MN的垂線,垂足為D.
在中,,則.
在中,,
所以.
因?yàn)?/span>,所以,
所以.
由,則,.
由,得.
所以,
即,其中.
(2)設(shè),,
則.
令,得,所以.
列表如下:
0 | |||
h(θ) | ↘ | 極小值 | ↗ |
所以當(dāng)時(shí),取得最小值,
所以取得最小值,此時(shí).
答:當(dāng)點(diǎn)P選在距離A地處時(shí),鋪設(shè)的總費(fèi)用最少,且為萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)為邊長(zhǎng)為1的正方形內(nèi)部及其邊界的點(diǎn)構(gòu)成的集合.從中的任意點(diǎn)P作x軸、y軸的垂線,垂足分別為,.所有點(diǎn)構(gòu)成的集合為M,M中所有點(diǎn)的橫坐標(biāo)的最大值與最小值之差記為;所有點(diǎn)構(gòu)成的集合為N,N中所有點(diǎn)的縱坐標(biāo)的最大值與最小值之差記為.給出以下命題:
①的最大值為:②的取值范圍是;③恒等于0.
其中所有正確結(jié)論的序號(hào)是()
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某機(jī)構(gòu)為調(diào)查我國(guó)公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
年齡不大于50歲 | 80 | ||
年齡大于50歲 | 10 | ||
合計(jì) | 70 | 100 |
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫(xiě)完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無(wú)關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位女教師的概率.
附:,
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)記表示m,n中的最大值,若,且函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,12月1日至12月5日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)如下表所示:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2組數(shù)據(jù)的概率.
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程.
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱中,,,M,N分別是,的中點(diǎn),且.
(1)求的長(zhǎng)度;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程有兩個(gè)不等實(shí)根、,且,則實(shí)數(shù)的取值范圍為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)設(shè),求的最小值;
(2)若曲線與僅有一個(gè)交點(diǎn),證明:曲線與在點(diǎn)處有相同的切線,且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是正方形,且,平面 平面,,點(diǎn)為線段的中點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求證:平面 平面;
(Ⅱ)設(shè)二面角的平面角為,試判斷在線段上是否存在這樣的點(diǎn),使得,若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com