【題目】已知

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記表示m,n中的最大值,若,且函數(shù)恰有三個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

【答案】(Ⅰ),當(dāng)時(shí),的單減區(qū)間為;當(dāng)時(shí),的單減區(qū)間為,單增區(qū)間為.(Ⅱ)

【解析】

(Ⅰ)對(duì)求導(dǎo),得到,然后分,分別要求的正負(fù),從而得到的單調(diào)區(qū)間;(Ⅱ)分進(jìn)行討論,當(dāng)時(shí),可知證明至多有兩個(gè)零點(diǎn),不合題意,當(dāng)時(shí),先得出關(guān)于對(duì)稱,所以要有3個(gè)零點(diǎn),則必須在上取到2個(gè)零點(diǎn),得到關(guān)于的不等式組,解出的范圍,得到答案.

解:(Ⅰ)的定義域?yàn)?/span>R

①當(dāng)時(shí),,所以的單減區(qū)間為;

②當(dāng)時(shí),令,得,

,得,

綜上得,當(dāng)時(shí),的單減區(qū)間為;

當(dāng)時(shí),的單減區(qū)間為,單增區(qū)間為

(Ⅱ),

的唯一一個(gè)零點(diǎn)是,∴

由(1)可得:(。┊(dāng)時(shí),的單減區(qū)間為,

此時(shí)至多有兩個(gè)零點(diǎn),不符合題意

(ⅱ)當(dāng)時(shí),令,

的圖象關(guān)于點(diǎn)對(duì)稱,

的圖象關(guān)于中心對(duì)稱,

注意到上恒正,

要有3個(gè)零點(diǎn),則必須在上取到2個(gè)零點(diǎn),

如圖,

∴極大值,且

則有

綜上,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)內(nèi)電商的不斷發(fā)展,快遞業(yè)也進(jìn)入了高速發(fā)展時(shí)期,按照國(guó)務(wù)院的發(fā)展戰(zhàn)略布局,以及國(guó)家郵政管理總局對(duì)快遞業(yè)的宏觀調(diào)控,SF快遞收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)1kg的包裹收費(fèi)10元;重量超過(guò)1kg的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(guò)1kg(不足1kg,按1kg計(jì)算)需再收5.某縣SF分代辦點(diǎn)將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

重量(單位:kg

0,1]

12]

2,3]

3,4]

45]

件數(shù)

43

30

15

8

4

對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

件數(shù)范圍

0~100

101~200

201~300

301~400

401~500

件數(shù)

50

150

250

350

450

天數(shù)

6

6

30

1

6

以上數(shù)據(jù)已做近似處理,將頻率視為概率.

1)計(jì)算該代辦未來(lái)5天內(nèi)不少于2天攬件數(shù)在101~300之間的概率;

2)①估計(jì)該代辦點(diǎn)對(duì)每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),該代辦點(diǎn)將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),其余的用作其他費(fèi)用.目前該代辦點(diǎn)前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,日工資110.代辦點(diǎn)正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后代辦點(diǎn)每日利潤(rùn)的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線.

(1)若直線經(jīng)過(guò)拋物線的焦點(diǎn),求拋物線的準(zhǔn)線方程;

(2)若斜率為-1的直線經(jīng)過(guò)拋物線的焦點(diǎn),且與拋物線交于,兩點(diǎn),當(dāng)時(shí),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線交于,兩點(diǎn),

(1)求的方程;

(2)求過(guò)點(diǎn)且與的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù),則下列結(jié)論中錯(cuò)誤的個(gè)數(shù)是( )

①函數(shù)的值域與的值域相同;

②若是函數(shù)的極值點(diǎn),則是函數(shù)的零點(diǎn);

③把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,就可以得到的圖像;

④函數(shù)在區(qū)間內(nèi)都是增函數(shù).

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校進(jìn)行社會(huì)實(shí)踐,對(duì)歲的人群隨機(jī)抽取 1000 人進(jìn)行了一次是否開通“微博”的調(diào)查,開通“微博”的為“時(shí)尚族”,否則稱為“非時(shí)尚族”.通過(guò)調(diào)查得到到各年齡段人數(shù)的頻率分布直方圖如圖所示,其中在歲, 歲年齡段人數(shù)中,“時(shí)尚族”人數(shù)分別占本組人數(shù)的.

(1)求歲與歲年齡段“時(shí)尚族”的人數(shù);

(2)從歲和歲年齡段的“時(shí)尚族”中,采用分層抽樣法抽取6人參加網(wǎng)絡(luò)時(shí)尚達(dá)人大賽,其中兩人作為領(lǐng)隊(duì).求領(lǐng)隊(duì)的兩人年齡都在歲內(nèi)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某沿海地區(qū)計(jì)劃鋪設(shè)一條電纜聯(lián)通A,B兩地,A地位于東西方向的直線MN上的陸地處,B地位于海上一個(gè)燈塔處,在A地用測(cè)角器測(cè)得,在A地正西方向4km的點(diǎn)C處,用測(cè)角器測(cè)得.擬定鋪設(shè)方案如下:在岸MN上選一點(diǎn)P,先沿線段AP在地下鋪設(shè),再沿線段PB在水下鋪設(shè).預(yù)算地下、水下的電纜鋪設(shè)費(fèi)用分別為2萬(wàn)元/km4萬(wàn)元/km,設(shè),,鋪設(shè)電纜的總費(fèi)用為萬(wàn)元.

1)求函數(shù)的解析式;

2)試問點(diǎn)P選在何處時(shí),鋪設(shè)的總費(fèi)用最少,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的頂點(diǎn)為,底面圓心為,半徑為

(1)設(shè)圓錐的母線長(zhǎng)為,求圓錐的體積;

(2)設(shè),、是底面半徑,且為線段的中點(diǎn),如圖.求異面直線所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案